列方程解决行程问题教学设计(精选12篇)
一.教学内容:
人教版五年级上册第79页例5.二.教学目标:
知识与目标:结合具体事例,列出方程解决稍复杂的相遇问题。
过程与方法:根据相遇问题中的等量关系列方程并解答,感受解题方法的多样化。
情感态度与价值观:体验列方程解决问题的价值,增强学好数学的自信心。注重数学练习生活实际,快乐学习列方程解决行程问题。
三.教学重难点:
教学重点:正确寻找数量间的等量关系式。
教学难点:创设情境提高学生的学习兴趣,并利用画线段图的方法帮助学生分析理解等量关系。
四:教学过程: 1 复习导入
(1)教师:我们学过有关路程的问题,谁来说一说路程,速度,时间之间的关系?
学生:速度×时间=路程。(2)引导学生:一般情况下,咱们算的路程问题都是向同一个方向走的。那么,想一想,如果两个人同时从一段路的两端出发,相对而行,会怎样?(相遇)(3)揭示主题:今天我们就利用方程来研究相遇问题。2 互动新授
1.出示教材第79页例5.小林家和小云家相距4.5km。周日早上9:00 两人分别从家骑自行车相向而行,两人何时相遇?
教师提出问题:1,从图中你得到了哪些数学信息?
2,你们有不明白的地方吗?
(理解“相距”,“相向而行”,“相遇”含义)
3,你能用图把这道题的意思表示出来吗? 引导学生观察,并思考题中的已知条件和要求的问题是什么? 学生思考讨论了一段时间后 学生:我知道了题目中的已知信息是:小林每分钟骑250m,小云每分钟骑200m.小林和小云相距4,5km。问题:两人何时相遇? 学生:“相距”是说两地之间的距离;“相向而行”是他们两人互相面对着面而行;“相遇”是他们两人碰到了一起。学生:用线段图表示为
老师:对,你们很棒!回答的很正确。
教师:有同学知道这副线段图表示的意思吗?你们用手比划比划这两个人。他们是怎么走的,边比划边说说。
同学用手比划:两地 同时 相对(相向)相遇
活动:让学生上台走一走演示相遇,并用画线段图的方法分析数量关系。
老师提出问题:你能解决这个问题吗?请你独立列式解答,如果有困难,可以和小伙伴商量商量。
教师引导学生:这里的路程已经不是一个人行驶的了,而是两个人行驶的路程之和。相遇的时间就是两个人共同行驶全程用的时间。
学生交流汇报:小林骑的路程+小云骑的路程=总路程。教师质疑:现在能不能求出小林骑的路程和小云的路程呢? 引导学生汇报:都不能求出,因为他们行驶的时间不知道。再思考:他们俩行驶的时间一样吗?为什么?
学生交流后会发现:他们是同时出发,所以相遇时行驶的时间应该是一样的,可以把他们行驶的时间都设为x.教师让学生根据分析,尝试列方程解答问题。小组交流,汇报,教师根据学生的汇报板书: 小林骑的路程+小云骑的路程=总路程 解:设两人x分钟后相遇。
0.25x+0.2x=4.5
0.45x=4.5
X=10 答:两人在9:10相遇。
教师:你们还有没有其他的方法,思考交流一下。学生交流汇总:学生1:
(两边的路程分别分成了若干段,分别表示每一分钟行驶的路程)
学生2:
两人每分钟骑的路程和)×x=总路程
解:设两人x分钟后相遇。
(0.25+0.2)x=4.5
0.45x=4.5
X=10 答:两人在9:10相遇。
教师提问:你们是怎样想出来的,这每一步是怎样来的。这一段一段的路程表示什么? 学生思考交流汇总:
学生:可以先求总速度,就是他们两人一分钟骑的总路程,相遇时间一样,再乘以一起骑的时间(相遇时间)就是他们一共骑的路程。设相遇时间为x.教师:真聪明,你回答的真棒!
教师引导学生对这两种方法进行比较:通过比较可以知道这两种方法是运用了乘法分配律。引导小结:在相遇问题中有哪些等量关系? 甲的路程+乙的路程=总路程
(两人每分钟骑的路程和)×相遇时间=总路程 3.巩固拓展
教师出示例题:
两个工程队同时开凿一条675m长的隧道,各从一端相向施工,25 天打通。甲队每天开凿12.6m,乙队每天开凿多少米?
教师引导:1 自己读题,找出已知所求,引导学生画出线段图
2.用方程如何解决这个问题?自己试着做一做。
学生自己独立思考动手完成。
若干分钟后对学生的解题过程汇总: 学生:解:设乙队每天开凿x米。
(12.6+x)×25=675
12.6+x=675÷25
12.6+x=27
12.6+x-12.6=27-12.6
X=14.4 答:乙队每天开凿14.4米。4 课堂总结
教师:这节课你学会了什么知识?有哪些收获? 引导总结:
①通过画线段图可以清楚的分析数量之间的相等关系。
②解决相遇问题要用数量关系:甲速×相遇时间+乙速×相遇时间=路程;(甲速+乙速)×相遇时间=路程。
③列方程解求速度,相遇时间等问题时,首先要根据以前学习的相遇问题中数量间的相等关系,设未知数列方程,再正确的解答。5 作业
完成课本上第82页11,12,13,14题。
(谢谢)
设计人:沙口镇下新河中学 杨燕
教学目标
1.使学生在解决实际问题的过程中, 理解并掌握形如ax±b=c方程的解法, 会列上述方程解决两步计算的实际问题。
2.使学生在观察、分析、抽象、概括和交流的过程中, 经历将现实问题抽象为方程的过程, 进一步体会方程的思想方法及价值。
3.使学生在积极参与数学活动的过程中, 养成独立思考、主动与他人合作交流、自觉检验等习惯。
教学重点:理解并掌握形如ax±b=c方程的解法, 会列方程解决两步计算的实际问题。
教学难点:如何指导学生在观察、分析、抽象、概括和交流的过程中, 将现实问题抽象为方程。
教学过程
课前谈话导入:同学们, 经调查, 我们班大部分同学的年龄是12岁 (虚岁) , 也可以通过推理推算出来, 7岁入学, 在学校学了五年, 正好是12岁。老师今年是39岁, 师在黑板上板书39和12。下面请同学比较一下老师和你的年龄, 并用一句话把比较的结果说出来, 注意启发引导学生说出:“老师的年龄比我年龄的3倍还多3岁”, “老师的年龄比我年龄的4倍少9岁”。两种说法都可以。接着问, 明年呢?“老师的年龄比我年龄的3倍还多1岁”。
【设计意图】通过学生熟悉的年龄话题引入, 并训练学生对两数大小比较, 为新课分析数量关系作理解铺垫。把抽象的数量关系分析生活化, 利于学生进入学习情境。
一、在现实问题情境中分析数量关系, 列出方程, 探索解方程的方法——教学例1
(一) 在情境中分析数量关系, 提出问题
1.师谈话进入情境:孙悟空跟随师父历尽千辛万苦从西天取来大量经书, 藏在古城西安的大雁塔中。大雁塔和小雁塔是著名的古代建筑。 (出示大雁塔和小雁塔的图片) 这节课, 我们先来研究一个与这两处建筑高度有关的数学问题。 (出示例1的一部分“西安大雁塔的高度比小雁塔高度的2倍少22米”, 暂不出示所求的问题)
2.师让生读出这段文字并提问:谁比谁少22米?让学生明白“大雁塔高度和小雁塔高度的2倍比, 少22米, 可以把小雁塔高度的2倍看做一个整体。”
师进一步启发:这句话清楚地说明了大雁塔和小雁塔高度之间的关系, 请同学们用数量关系式表示出大雁塔和小雁塔高度之间的相等关系。
出示学生可能想到的等量关系式: (1) 小雁塔的高度×2-22=大雁塔的高度; (2) 小雁塔的高度×2=大雁塔的高度+22; (3) 小雁塔的高度×2-大雁塔的高度=22。
3.引导学生观察第一个等量关系式。师:经测量小雁塔高度是43米, 你能利用这个关系式口答出大雁塔的高度吗?学生口答, 师板书:2×43-22=64 (米) 。
【设计意图】运用数量关系直接求出高度, 体会顺向思维。既感受数量关系的价值, 又为下面的逆向思维作出对比准备, 更重要的是让学生在下面列方程时也要像这样顺向思维进行思考。
4.师:如果知道大雁塔的高度是64米, 你能提出什么问题?
生:小雁塔的高度是多少米? (出示“大雁塔高度是64米”和“小雁塔高度是多少米?”把例1补充完整。)
【设计意图】在清楚数量关系的基础上, 学生已经把问题迁移到需要用逆向思维考虑解决的问题上。让学生自己提出问题, 突出解决问题是学生自己的学习需求, 也为他们探索解答作出心理准备。
(二) 根据等量关系布列方程, 同时唤起有关方程的旧知
1.生观察第一个等量关系式, 师提问:在这个等量关系式中, 这时哪个数量是已知的?哪个数量是我们去求的?
追问:让你求小雁塔的高度怎么办呢?我们可以用什么方法来解决这个问题?
生:可以列方程解答。如果学生列出正确的算式进行解答, 师给予肯定, 再引导学生用方程的方法解决问题。
师明确方法, 并提示课题:这样的问题可以列方程来解答。今天我们继续学习列方程解决实际问题。 (板书课题:列方程解决实际问题)
2.师谈话:我们在五年级已经学过列方程解决简单的实际问题, 结合今天我们学习的内容, 谁来说一说列方程解决实际问题一般要经过哪几个步骤?
生能大概说出“写设句、列方程、解方程和检验等即可。
3.让学生先自主尝试设未知数, 并根据第一个等量关系式列出方程。
解:设小雁塔高x米。
2x-22=64
【设计意图】经历由现实问题抽象为方程的过程。在建构数学模型的过程中, 先由情境抽象成数量关系式, 再根据数量关系式列出方程, 实现了学生在逐步抽象的过程中学习数学的方法, 体现了数学的简洁性和学习数学的必要性。
(三) 自主探索解方程的方法, 体会转化的思想
提问:这样的方程, 你以前解过没有?运用以前学过的知识, 你能解出这个方程吗?
交流中明确:首先要应用等式的性质将方程两边同时加上22, 使方程变形为2x=?, 即把用两步计算的方程转化为一步计算, 变新知为旧知, 再用以前学过的方法继续求解。
要求学生接着例题呈现的第一步继续解出这个方程。学生完成后, 组织交流解方程的完整过程, 核对求出的解, 并提示学生进行检验, 最后让学生写出答句。
【设计意图】让学生在自主探索方程解法的过程中, 体会运用转化策略, 把两步转化成一步、复杂转化成简单、新知转化成旧知。
(四) 思考其他方法, 感受解法的多样化
1.提问:还可以怎样列方程?
学生列出方程后, 要求他们在小组内交流各自列出的方程, 并说说列方程的根据, 以及可以怎样解列出的方程。如果学生不能列出其他方程, 师不能作硬性要求。
2.引导小结:刚才我们通过列方程解决了一个实际问题。你能说说列方程解决问题的大致步骤吗?其中哪些环节很重要?
引导学生关注:⑴要根据题目中的信息寻找等量关系, 而且一般要找出最容易发现的等量关系;⑵分清等量关系中的已知量和未知量, 用字母表示未知量并列方程;⑶解出方程后要及时进行检验。 (师板书:找等量关系;用字母表示未知数并列方程;解方程, 检验。)
【设计意图】通过解法的多样化, 使学生明白可以根据自己学习实际和思维习惯分析数量关系, 列方程解决问题, 同时训练学生思维, 拓展学生解决问题的思路。
二、自主尝试列方程解决实际问题, 注意比较例题, 进一步形成解决问题模式——自主合作学习“练一练”
“杭州湾大桥是目前世界上最长的跨海大桥, 全长大约36千米, 比香港青马大桥的16倍还长0.8千米。香港青马大桥全长大约多少千米?”
谈话:我们已经初步掌握列方程解决稍复杂的实际问题的方法和步骤, 下面就请同学们试着解决一个实际问题。做“练一练”。
1.先让学生读题, 并设想解决这一问题的方法和步骤, 然后让学生独立完成。
2.小组合作交流。交流前要出示交流顺序提示:⑴说说找出了怎样的等量关系;⑵根据等量关系列出了怎样的方程;⑶是怎样解列出的方程的;⑷对求出的解有没有检验。
3.最后让学生核对自己的答案, 检查自己的解题过程。
针对学生不同的思路和方法 (包括用算术方法) , 教师在提出主导意见的基础上要予以肯定。
4.启发思考:这个问题与例1有什么相同的地方?有什么不同的地方?提炼出列方程解决稍复杂的实际问题的基本思路和解形如ax±b=c方程的一般方法。
【设计意图】让学生在独自解决问题的过程中学会解决问题, 在探究中学会合作。
三、运用方程策略独立解决实际问题, 牢固形成解决问题模式 (建构牢固的数学模型) ——做“练习一”的第1~5题
谈话:在列方程解决问题的过程中, 有两个方面要引起我们重视, 一个是寻找等量关系, 能用含有字母的式子表示具体数量;另一个就是解方程。下面我们就对这两个方面进行进一步的学习和训练。
1.做“练习一”第1题
“解方程。4x+20=56 1.8+7x=3.9 5x-8.3=10.7”
先让学生说说解这些方程时, 第一步要怎样做, 依据是什么, 然后让学生独立完成。交流反馈时, 要在关注结果是否正确的同时, 了解学生是否进行了检验。 (三个同学到黑板上板演, 其他同学选做一题。)
2.做“练习一”第2题
“在括号里填上含有字母的式子。
(1) 张村果园有桃树x棵, 梨树比桃树的3倍多15棵。梨树有 () 棵。
(2) 王叔叔在鱼池里放养鲫鱼x尾, 放养的鳊鱼比鲫鱼的4倍少80尾。放养鳊鱼 () 尾。
学生独立完成后, 再要求学生说说写出的每个含有字母的式子分别表示哪个数量, 是怎样想到写这样的式子的? (把题目中的多、少改成少、多让学生再表示)
3.做“练习一”第3题
“猎豹是世界上跑得最快的动物, 时速能达到110千米, 比猫最快时速的2倍还多20千米。猫的最快时速是多少千米?”
谈话:同学们, 我们既能准确地找到等量关系, 又能正确解方程, 那么我们就具备了解决实际问题的能力了。就请同学们独立解决一个问题。
学生独立完成后, 指名说说自己的思考过程, 进一步突出要根据题中数量之间的相等关系列方程。
4.课堂作业:做“练习一”的第4题和第5题。
“北京故宫占地大约72公顷, 比天安门广场的2倍少8公顷。天安门广场大约占地多少公顷?”
“世界上最小的鸟是蜂鸟, 最大的鸟是鸵鸟。一个鸵鸟蛋长17.8厘米, 比一只蜂鸟体长的3倍还多1厘米。这只蜂鸟体长多少厘米?”
【设计意图】在巩固训练和应用策略阶段采用先部分后整体的练习步骤, 进一步深化认识, 并在体验中达到知识和技能的内化。
四、总结列方程解决问题的思路、方法, 体会方程的思想和价值——学生拓展设计
1.学生拓展设计
师:请同学们回到课前, 我们师生关于年龄的对话中, 看39岁和12岁, 你能设计一个用今天所学的策略和方法解答的实际问题吗?
师要多听学生的发言, 考虑学生所说数量之间的关系以及提出问题的贴切性并作出评价和概括。
2.今天这节课我们学习了什么内容?你有哪些收获?还有没有疑惑的地方?教师同时总结, 方程是我们解决问题很重要的一个策略, 正确地运用方程, 能帮助我们解决很多实际问题, 尤其是用算术方法不容易解决的一些问题。我相信同学们经过今天的学习, 对方程会有更深的认识, 并在以后的学习和运用中进一步学好和用好方程。
某老师首先表明自己的看法,建议将第13页练习四的第四题当复习题出示,唤起学生对旧知的记忆。接着他提出自己的疑问:“这种类型的题目是不是必须用方程解?完全可以用比的知识解啊,比如女生人数是男生的80%,可以看成女生和男生的人数比为4:5,则女生人数为36÷(4+5)×4,男生人数为36÷(4+5)×5。这样计算起来更方便。”该老师的想法得到另一位老师的认同:“我认为将第四题提前出示比较好,这样更容易做这种类型的题目,也便于学生想到其他方法,也体现了算法的多样化。”
这时,笔者提出了自己的担忧:“如果这样做,我估计大部分同学都会使用所谓的其他方法而不会使用方程来解这道题。”笔者话音未落,某老师立即反驳:“我们教学不能给学生定调子,扣帽子。应该鼓励算法多样化,发展学生的思维。通过第四题的复习,唤醒旧知,让学生去选择最优解法,用自己喜欢的方法去解题。”其他老师纷纷响应。
笔者说出了自己的反对意见:“其实我最担心的就是学生用那种所谓的最优方法来解题,我也赞同算法的多样化,但我不赞同为了解题而将老师所认为的最优方法通过自己的方式强加给学生。现在所谓的最优方法,可能是现阶段做对这种题目的某一种方法,比如苏教版五年级下册第9页试一试,蓝鲸是世界上最大的动物,一头蓝鲸重165吨,大约是一头非洲象的33倍,一头非洲象大约重多少吨?如果用所谓的最优方法,用学生喜欢的方法,那么大部分同学肯定会用165÷33=5(吨)。但这是本节课的教学内容吗?这有利于学生整个思维体系的发展吗?苏教版教材中所学习的列方程解决实际问题都是特别简单的,我相信教材的编写者并不是仅希望同学们会做这道题,而是向学生渗透方程的有关知识,逐渐与初中知识接轨,是一种方法的教学,而不是一种技能的教学。教学不能以一城一池的得失来判断。也许用算术方法来做正确率更高,但学生失去的会是一种方法,一种体验。如果说在这里来讨论解题的优化,那么,这就是打着算法多样化的幌子,来行应试教育之实。”笔者的一番话终于得到一位老师的认同:“大家来看一下例5下面的线段图,编写者的意图是不是担心学生不会列方程而出示的,还是为了帮助学生更好地理解等量关系式而设置的呢?这种类型的题目相对还是比较简单的,学生要想解答出来并没有多少难度,对于等量关系式的理解也并不难,所以编者的意图肯定是引导学生更好地理解等量关系式,从而引导学生来列方程解答。”
对于列方程解决实际问题的教学,我认为要注意几点。一是重思维发展轻正确率,从用算术方法解答到有方程解答,就好比是一个孩子由爬到走的过程,中间必然有一个蹒跚的过程,也许学生会摔跟头,做错题目,但我们不可能因为孩子会摔跟头而不让孩子去学走路。二是重找等量关系式轻题目的解答,对于等量关系式的分析是列方程解决实际问题的关键,等量关系式是列方程的依据,所以着力培养学生找等量关系式的能力是教学的重中之重,而不仅仅是让学生会列方程解方程,得出最后的结果。三是重体验感受轻题目训练,由于学生长时间使用算术方法,对方程会感到不适应,在教学中,我们要通过对比练习,分析各自的特点,感受到方程在解决某些问题的优越性,再辅以适当的练习加以强化,使学生对于列方程解决实际问题从逐步适应到熟练掌握。总之,虽然我们在教学时不要定调子,扣帽子,但我们要铺路子,让学生在学习的道路上茁壮成长,而不是让他们信马由缰,那么学生只能是遍体鳞伤。
思茅第五小学 孙会芝
一、教学内容:
义务教育课程标准实验教科书(人教版)五年级上册第四单元简易方程第61页例4及练习十一第10题。
二、教材分析
这部分内容是在学生学习并理解了方程的意义以及会用等式的基本性质解方程,初步体验了用方程解决现实问题的基础上进行教学的,是今后进一步学习代数知识的基础。
教材以节约用水为题材,先提出问题,让学生思考,再给出条件,这样有利于培养学生从问题出发去寻找所需条件的分析能力。有了前一节例3的学习基础,因此教材直接介绍列方程的解法。
三、学情分析
由于在以往的学习中都是列算式解决问题的,未知数始终作为一个“目标”不参与列式运算,只能用已知数和运算符号组成算式,只是在例3中刚刚接触到列方程解决问题,因此学生对列方程解决问题还不太熟练,对一些数量关系也比较模糊,由此,学生在学习中会有一定困难,教学时要从分析数量关系入手,让学生充分理解题意的基础上再列方程解决问题。
四、教学目标:
1、结合具体的问题情景,理解和掌握列方程解决问题的步骤和方法,培养学生列方程解决实际问题的能力,增强学生数学应用意识。
2、通过对浪费水资源的调查、了解,使学生感受到“节约用水”的现实性和迫切性,并利用课堂所学知识指导生活,学会在实际生活中节约利用能源,减少资源浪费。
3、树立一定的环保意识和社会责任感,并积极参与身边力所能及的环保活动。
五、教学重点:理解和掌握列方程解决问题的步骤和方法。
六、教学难点:分析数量关系,建立等量关系式。
七、课前准备:
每个大组用一只水桶在滴水的水龙头下接水半小时,并记录好接到的水的重量。
八、教学过程:
1、谈话激趣,引出问题
师:水是人类生存和生活的基础,是世界任何一个国家或民族生存的前提,没有水,不用说发展,就是这个国家或民族的生存也将存在问题。有关的专家曾经预言,20年里全世界将会有三分之二的人口将处于严重缺水状态。我国的长江也因近几年的开发和利用,水位远远低于以往水平。我国的黄河也因缺水,个别河段曾出现断流的现象。作为一个小主人我们该如何面对这些情况呢?
(设计意图:让学生从资料和数据中知道水资源的重要性,感受“节约用水”的现实性和迫切性,初步树立节约能源的意识。)
学生有可能说:水是生命之源,我们要节约用水,为我们的明天留下宝贵的水资源。
师:对,节约用水,合理利用水资源是迫在眉睫的一件大事。首先,请同学们把课前调查、了解到的情况汇报一下。(各大组同学汇报课前调查的水龙头漏水情况,教师用表格的形式板书)
师(指着表格):同学们仔细看一看,一个滴水的水龙头半小时漏掉了这么多水,那么,你知道这样的一个水龙头一分钟要浪费多少水吗?
2、结合情景,探索新知
师:老师也在课前做了调查,得到的结果是(板书例4):一个滴水的水龙头半小时漏掉了1.8㎏水。你能算出这个水龙头每分钟浪费多少水吗?
(1)学生读题,收集信息:滴水时间:半小时;半小时滴水量:1.8㎏。问题是算出这个水龙头每分钟浪费多少水。
(2)解读信息:滴水时间半小时也就是30分钟,1.8㎏就是30分钟的滴水总量。
(3)整合信息,列出方程:师问:每分钟滴水量、30分钟与半小时滴水总量之间有什么等量关系?
学生通过思考得出:每分钟的滴水量×滴水时间(30分钟)=30分钟的滴水总量。
师:根据上面的等量关系式,说一说哪些量是已知的,哪些量是未知的?你认为应该怎么办?
生:滴水时间和30分钟的滴水总量是已知的,每分钟的滴水量是未知的。应该把每分钟的滴水量设为X。
板书:解:设这个水龙头每分钟浪费X㎏水。30 X = 1.8(4)解决问题:学生独立解答。X = 1.8 30 X ÷ 30 = 1.8 ÷ 30 X = 0.06 答:这个水龙头每分钟浪费0.06千克水。
3、引导学生归纳小结,总结方法
师问:通过对这一问题的解决,你知道列方程解决问题的特点是什么吗?
师引导学生归纳:用字母表示未知数,根据题目中数量之间的相等关系,列出一个含有未知数的等式(即方程),再解答。
那么,列方程解决问题的一般步骤是什么?
师生共同归纳:①收集信息,找出已知条件和问题;②解读并整合信息,找出题中数量之间的相等关系,并用X表示未知数,列出方程;③解方程;④检验,写出答语。
4、挖掘资源,渗透节约能源教育
师:同学们,一个滴水的水龙头每分钟就要浪费这么多的水,按这样计算,一个关不紧的水龙头每天要漏掉86.4千克的水,一个月(按30天计算)要漏掉2592千克(也就是2.592吨),一年大约就要漏掉31吨水。这些写在我们身边的惊人的数字,应该引起我们足够的重视,如果我们在平时的生活中自觉的节约用水,用水时水龙头 4 不要开得过大,用后关好水龙头。甚至学会一水多用(即重复利用),如:用洗米水洗菜、洗碗、浇花,用洗衣服的水擦地板、冲厕所等,养成节约用水的好习惯,那么我们一年节约下来的水也将是一个惊人的数字。让我们行动起来,从现在做起,从我做起,为祖国建设做一点自己力所能及的贡献。
5、巩固练习,学以致用
完成练习十一(即教材第64页第10题):
每平方米阔叶林每天能制造75g氧气,是每平方米草地每天制造氧气地5倍。每平方米草地每天能制造多少克氧气?
学生认真读题,收集信息,解读和整合信息,然后交流收集、解读和整合信息的情况,集体交流、讨论,确定解题方法,建立等量关系式,列出方程并独立解答。
解:设每平方米草地每天能制造X克氧气。5 X = 75 5 X÷5 = 75÷5 X = 15 答:每平方米草地每天能制造15克氧气。
6、结合实际,增强环保意识
师:从上题中,你们想到了什么?
学生有可能会想到植绿、护绿,教师借机进行环保教育。师:从这道题中我们知道了原来树木和草地不仅可以美化环境,5 还可以制造氧气,其实,植物能稀释、分解、吸收和固定大气中的有毒有害物质,改善我们的生活环境。因此,我们要从小事做起,爱护我们身边的一草一木,让我们生活的环境更加美好!
7、本课小结
二、列方程解答两、三步计算的实际问题。
总之,一切以“解”为出发点,注重的是解决问题的结果。经过学习,我知道其实更深意义的教学应当另有所求:即以“学解”为出发点,注重的是解决问题的过程,也就是要让学生经历寻找实际问题中数量关系并列方程解答的全过程。这一单元的价值在通过学习,增强学生用方程解决实际问题的意识和能力,进一步丰富解决问题的策略,帮助学生加深理解方程是一种重要的数学思想方法。
回顾我第一课时的教学,成功之处在于较好地培养了学生的思维。首先我设置了这样一个导入题:西安小雁塔高43米,(师述:大概14、15层楼高)而大雁塔的高度是它的2倍少22米,大雁塔有多高?然后由导入题引出关键句,标准量,数量关系式三个名词概念(为将来的学习作一铺垫)。再将导入题与例1进行比较异同,在对比中明确例1为什么要用方程来解比较合宜,从而体现了用方程解作为一种顺思维它存在的价值,让学生较轻松的构建方程模型。
失败之一:
由于高估了学生的已有能力,解方程过程教学过于放松,没有强调书写规范,更甚者对4X=36÷4这样的错误没有预见,以致于课堂作业很不中看,不过这些问题课后用十分钟和同学们讨论,同学们都能认识到错误,顺利过关。然而,追求尽善尽美的我们还是应当引以为戒。
失败之二:
没给出点时间让学生探寻其他解法。其实我私自认为将这一过程放在第一课时,有点难为我的学生。我应当先给他们建一个完整的方程模型,然后再是模型之上的升华。
陈硕
教学内容:人教版五年级上册数学书.1、初步学会如何利用方程来解应用题
2、能比较熟练地解方程。
3、进一步提高学生分析数量关系的能力。
教学重难点:找题中的等量关系,并根据等量关系列出方程。教学过程:
一、复习导入
用含有字母的式子表示下面的数量关系。
① χ 的5倍。()②18个a的和。()
③比b的13倍多2的数。()④χ除以5。()⑤比χ的3倍少5的数。()
二、创设情境,激发兴趣
1、教学例 3.(1)出示题目。(课件)出示洪泽湖的图片,介绍到:洪泽湖是我国五大淡水湖之一,位于江苏西部淮河下游,风景优美,物产丰富。但每当上游的洪水来临时,湖水猛涨,给湖泊周围的人民的生命财产带来了危险。因此,密切注视水位的变化情况,保证大坝的安全十分重要,如果湖水到了警戒水位的高度,就要引起高度警惕,超出警戒水位越多,大坝的危险就越大。下面,我们来就来看一则有关大坝水位的新闻。
谁来当主持人,为大家播报一下。“今天上午 8 时,洪泽湖蒋坝水位达 14.14m,超过警戒水位0.64m.” 我们结合这幅图片来了解一下,课件演示警戒水位、今日水位,及其关系。
同学们想想,“警戒水位是多少米?”
三、交流互动,学习新知
(1)分析,解题 根据刚才所了解的信息,这个问题中有哪几个关键的数量呢?警戒水位、今日水位、超出部分。它们之间有哪些数量关系呢?(板)警戒水位+超出部分=今日水位
①今日水位-警戒水位=超出部分
②今日水位-超出部分=警戒水位
③同学们能解决这个问题吗? 学生独立解决问题。
(2)评讲、交流。(侧重如何用方程来解决本题。)学生展示,可能会是算术方法,也可能列方程。对于算术方法,给予肯定即可。学生列出的方程可能有: ①x+0.64=14.14②14.14-x=0.64③14.14-0.64=x 每一种方法,都需要学生说出是根据什么列出的方程。如第一种,学生根据的是“警戒水位+超出部分=今日水位”这一数量关系(由于左右相等,也称等量关系)所得到的。解出方程,注意书写格式,并记着检验(口头检验)。
对于第二种,可以肯定学生所列的方程是正确的,但方程不容易解,为什么呢?因为 x 是被减去的,因此,在小学阶段解决问题,列的方程,未知数前最好不是减号。
对于第三种,可让学生让算术解法与之作比较,让其发现,大同小异,因此,在列方程的过程中,通常不会让方程的一边只有一个 x。
(3)、总结:今天我们学习了列方程解乘除计算应用题,谁能用自己的话说说,列方程解应用题的一般步骤是什么? 解题的关键是什么?
课件出示:列方程解应用题的一般步骤和解题关键。(1)弄清楚题意,找出已知条件和问题。
(2)找出题中数量之间的等量关系,并用X表示未知数,(3)列出方程(4)解方程
(5)检验,并写出答案。
三、巩固练习(课件出示,说出等量关系式,列出方程,不解答)
1、小明今年的身高是1.52m,他比去年长高了 8 cm。小明去年身高多少?
2、根据题中的数量关系列出方程,并求出方程的解。(见课件出示)
3、长江是我国第一长河,长 6 299 km,比黄河长 835 km。黄河长多少千米? 4、果园里有苹果树326棵,比梨树多37棵,果园里有梨树多少棵?
四、课堂小结: 通过今天的学习,我们掌握了列方程解应用题的一般步骤,请同学们下课之后把61的内容好好看一看,并把书中解题的过程填上去。今天和大家的学习很愉快。你们很聪明,希望你们在今后的学习中继续努力。板书设计
列方程解决问题
警戒水位+超出部分=今日水位解:
解:设警戒水位是 x 米。X+0.64=14.14 X+0.64-0.64=14.14-0.64 X=13.5 答:警戒水是 13.5 米。
教学反思: 用方程解决问题是在学习了解简易方程的基础上进行教学的。首先,本节课充分发挥学生的主体作用,从实际生活,真实数据引入方程,在教师的引导下,学生独立思考,合作探究,总结归纳,掌握用方程解决实际问题的方法和步骤。整节课中,学生的观察,发现,交流贯穿了整个教学过程,力图让学生在一个宽松和谐的环境下仔细观察,认真思考,充分交流,培养学生的抽象概括能力和语言表达能力。
其次,培养了学生的良好的学习习惯。通过解方程内容的特点,培养学生规范书写生自觉检验的习惯。当然本课也有很多不足之处;
1、在讲课的过程中,发现自己语言不够简炼,严谨。
六年级 (上册) “方程”单元, 是在四年级 (下册) 和五年级 (下册) , 学生已经分别学习了“用字母表示数”“方程的意义”“等式的性质”等知识, 并能解决简单的、一步计算的方程, 会列方程解答简单的、一步计算的实际问题的基础上安排的。本单元教学内容的安排和教学的设计是在继承传统优势的基础上, 从便教利学出发, 着眼于学生继续学习, 加强了学生的自主探索, 注重学生对方程思想方法和价值的感受和体验。突破了传统教材先学解方程, 再利用解方程来解决实际问题的做法, 把列方程解决实际问题和解方程安排在一起进行教学, 使学生在列方程解决实际问题的过程中学习解方程。教师在解读教材, 研究教法、学法, 具体教学中可从以下几个方面认真把握。
第一, 从促进学生有效地参与数学学习活动, 提高学习效率出发, 科学合理安排教学内容
六年级 (上册) 教科书“方程”单元安排了两个例题:例1, 西安大雁塔高64米, 比小雁塔高度的2倍少22米。小雁塔高多少米?例2, 北京颐和园占地290公顷, 其中水面面积大约是陆地面积的3倍。颐和园的陆地和水面大约各有多少公顷?让学生解形如ax±b=c、ax÷b=c、ax±bx=c的方程, 学习列方程解答两、三步计算的实际问题。通过这部分内容的教学, 一方面可以使学生进一步感受方程的思想和方法, 增强用方程方法解决问题的意识和能力;另一方面, 也能使学生进一步积累解方程的经验, 从而为后续学习打下基础。因此, 解形如ax±b=c、ax÷b=c、ax±bx=c的方程, 列方程解决两、三步计算的实际问题, 同属于本单元的教学内容。而会用等式的性质解形如ax±b=c、ax÷b=c、ax±bx=c的方程, 能列方程解决一些需要两、三步计算的实际问题, 也同为本单元的教学目标之一。
教材为了让学生更好地参与数学活动, 提高学习效率, 把解方程和列方程解决实际问题的教学融为一体, 同步进行, 这是和以前教材不同的编排。在例1里, 解2x-22=64这个方程是新知识, 用它解答实际问题也是新知识;在例2里, 解方程x+3x=290是新授内容, 解决实际的问题也是新授内容。这两道题既教学解方程的思路和方法, 又教学列方程的相等关系和技巧。这样编排, 能较好地体现数学内容和现实生活的联系。一方面分析实际问题里的数量关系, 抽象成方程, 形成知识与技能的教学内容。如例1, 通过分析大雁塔和小雁塔高度的数量关系, 建立起等量关系, 根据已知量和未知量的数量关系列出方程:2x-22=64。这是需要进行两步计算才能求出解的方程, 学生以前没有见过, 而今天也是在解决问题的过程中出现的新知识, 这提高了学生的求知欲望, 触动他们好奇心, 为了解决实际问题, 还必须解这道方程, 促使学生主动学习解方程。这不仅提供了学习的内容, 也提供了学生自主探索的空间和进行数学活动的机会。另一方面, 利用方程解决实际问题, 使知识技能的教学具有现实意义, 成为数学思考、解决问题、情感态度有效发展的载体。如例2, 通过学生学习解方程x+3x=290, 利用方程的解, 顺利解决了颐和园的陆地大约有72.5公顷, 水面大约有217.5公顷的实际问题。在解决问题的过程中, 学生充分体会到列方程和解方程的实际意义, 感受到解方程是解决问题的途径和必经过程, 枯燥的知识技能教学变得有意义、有情趣、有价值。
第二, 从引导学生主动学习方程解法考虑, 让学生在解决问题的过程中自主探索并掌握有关方程的解法
解形如ax±b=c、ax÷b=c、ax±bx=c的方程的知识基础主要有两点:一、等式的性质;二、化简ax±bx的方法。前者已在五年级 (下册) 教学过, 而且学生也积累了一定的利用等式的性质解只需要一步计算的方程的经验;后者在四年级 (下册) 教学用字母表示数时已安排相应的例题。因为有这些因素, 教材没有把解方程作为教学的重点, 而是把列方程解决实际问题作为教学的主线, 让学生在解决问题的过程中自主探索并掌握有关方程的解法。例1教学, 首先引导学生利用题中数量之间的相等关系列出方程2x-22=64, 学生对这个方程既熟悉又陌生, 熟悉的是ax=c的解法, 而这个方程多了“-22”该怎么办?新的问题产生了。这时学生初次面对两步解, 就要在教师的启发引导下, 运用转化的策略把稍复杂的方程转化成五年级 (下册) 里教学的简单方程。化复杂为简单、变未知为已知是人们解决新颖问题的常用策略。教材给出了解这个方程的第一步运算, 教师要鼓励学生自主解释并理解运算的依据, 并接着解出这个方程, 从而初步掌握解法。例2的教学是让学生通过解决实际问题, 学习解形如ax±bx=c的方程。同样教材也是先引导学生通过画图分析题中数量之间的相等关系, 并在根据等量关系列出方程后, 突出转化的过程, 鼓励学生独立求解, 并通过交流突出解例2这样的方程时, 一般要先化简, 即两步转化成一步, 复杂方程转化成简单方程, 使新知识植根于已有的经验和能力的基础上。教材为什么示范了解方程的全过程, 目的除了规范格式、理清解答过程, 还有一个目的就是说明这道题利用方程要解决两个实际问题:陆地面积和水面面积。然后重点启发学生结合题意检验方程, 进一步理解并掌握解方程的完整过程。
例1和例2都有列方程和解方程两个教学内容, 列出的方程必须正确地解答, 才可能得到正确的答案。解方程虽然不是教学的主线, 但它也是教学的主要内容。
因此教学过程中, 学生在初步掌握解方程的方法后, 又在后面练习里专门安排了解方程, 加强了解方程的练习, “练习一”的“1.解方程。4x+20=56, 1.8+7x=3.9, 5x-8.3=10.7。”是在例1解方程的基础上又向两个方向扩展, 一是引出了a+bx=c、ax-b=c等结构与例题不完全相同的方程, 二是把小数及运算纳入了方程。只要体会了例题里解方程的转化思想和转化方法, 会进行小数计算就能适应这两个方面的扩展。练习过程中要先让学生说说解每道方程的第一步要怎样做, 以及这样做的根据是什么, 然后让学生独立完成。交流时, 除了关注学生是否求得了正确的解, 还要关注学生解方程的过程是否进行了检验。这样及时的练习使解方程的思路和方法得到了进一步巩固, 也更好达成了解方程这个重要的教学目标。
第三, 从学生的实际思维和有利于学生发展的角度, 正确看待解方程的不同思路和不同解法
教材中突出了利用等式的性质解方程的方法, 如例1第一步“2x-22+22=64+22”, 要让学生清楚地理解, 根据等式的性质, 在方程的两边同时加上22, 就可以使方程变形为“2x=?”, 即把两步转化为一步, 新方程转化为以前学过的方程。应用等式的性质解方程, 较好地解决了关于方程解法的中、小学衔接问题。教材专门改变了在小学阶段利用四则运算的意义、四则运算互逆关系及相关运算律解方程的传统做法, 所以, 在五年级 (下册) 刚学习方程时就引入等式的性质, 并应用等式的性质解方程。
能解方程和会解方程是学生的基本技能, 也是学习能力。教师在帮助学生掌握教材提供的利用等式的性质解方程的基础上, 教师要尊重学生解决问题的实际情况, 尊重他们所看好的策略和方法, 从有利于学生思维、有利于学生解决问题和有利于学生发展的角度出发, 正确地对待学生不同的思考和运用不同的方法解方程。当学生能根据四则运算的意义、四则运算的互逆关系, 将例1解方程的过程由“2x-22=64”直接推出“2x=64+22”, 并接着写“2x=86, x=43”把方程解出来, 教师对于学生这样的思考和解法应给予充分肯定, 而且要说明能解方程和会解方程是目的。
既然让学生在列方程解决实际问题的过程中学习解方程, 那么, 解方程的学习也应该和数量关系的分析联系起来。学生根据不同的数量关系可以列出不同的方程, 也反映出学生在解方程时也会有各自独到的思考过程, 我们应该尊重不同的思考, 并帮助他们理清思路。当学生思考“怎样才能使大雁塔的高度是小雁塔高度的2倍”这个问题, 并且得出“只要64米加上22米, 它们的和不就是小雁塔高度的2倍吗”的结论。这时学生很顺利地列出方程“2x=64+22”, 当中也就蕴涵着解法的思考, 说不定学生就会干脆用算术方法“ (64+22) ÷2=43 (米) ”解答了。其实解方程也会加深对数量关系的分析, 帮助学生分析问题、解决问题, “小雁塔高度的2倍”不正好与“大雁塔的高度加上22米的和”建立起等量关系了吗!同时也让学生感受到解方程在解决实际问题过程中的价值。教学中, 我们要充分尊重教材, 领会教材的意图, 帮助学生完成必需的学习任务, 如分析数量关系列方程时, 我们要引导学生按条件叙述的顺序进行思考, 而不能鼓励他们喜欢怎么想就怎么想。在此基础上, 我们就要结合学生学习实际, 从利于学生学习数学、利于发展学生数学思考, 促进学生有效发展的角度, 科学地、综合地、全面地考虑, 通过创新教学, 使教学真正扎实、有效和有可持续发展性。
第四, 从学生的数学体验和数学思想的渗透的高度思考, 让学生在解方程和列方程解决实际问题的过程中感受方程的思想方法和价值
我们要重视学生的数学体验, 在解方程和列方程解决实际问题的过程中, 进一步感受方程的思想方法和价值。在教学解方程时, 都是根据实际问题, 通过分析数量关系列出方程, 再引导学生探索并掌握方程的解法。这样既使学生体会到方程是解决实际问题的需要, 又能使学生认识到列方程需要依据数量之间的相等关系。教材中安排的实际问题是需要逆向思考的问题, 学生经过列方程解决这样的实际问题, 体会到列方程解决实际问题可以按条件的叙述顺序, 通过正向思考解决。一方面降低了解决实际问题的思维难度, 拓宽了学生解决实际问题的思路;另一方面也有利于学生在列方程解决实际问题的过程中, 更好地感受方程的思想, 体会方程的实际应用价值。
在学生掌握列方程和解方程后, 教师注意引导把列方程和解方程与其他知识相结合, 继续解决一些实际问题, 如要求学生列方程解答已知三角形的面积和底, 求高的实际问题。并和现实生活中的一些实际问题联系起来, 用方程的方法去思考解答。这样在不同的情境中应用方程的知识和方法, 有助于学生把握方程思想的普遍意义, 不断提高解方程和列方程解决实际问题的能力。
等量关系是一种数学模型,它把数量关系表示为等式。用算术方法解决实际问题要分析数量关系,这时的分析着眼于挖掘已知条件之间的联系,沟通已知与未知的联系,通常把条件作为一个方面,问题作为另一个方面,因而是用已知数量组成的算式求得问题的答案。用方程解决实际问题的最大特点是将条件里的已知量与问题中的未知量有机联系起来,通过已知数量和未知数量共同组成的等式,反映实际问题里最主要的数量关系。
《列方程解决较复杂的实际问题》是苏教版小学数学六年级上册第一单元《方程》的内容。要想学生不受原有的程序思维的影响,就应从条件入手或者从问题入手来分析数量关系,着重帮助学生找到、理清、理解多个数量之间的相等关系。这个单元的例题只让学生做,错误率会很高,以往有的老师总是强调学生用方程解,甚至还直接告诉学生,一倍数不知道时一定要用方程解。这样的学习是一种被动的学习,学生根本不能体验到用方程解题的便利。因此,我从改变解决问题的途径开始,从相等关系入手进行下面的尝试:
活动一:复习导入。先出示关键句:红花是黄花的2倍。要求学生找出各种等量关系(3种),然后出示完整复习题“红花有20朵,红花是黄花的2倍,黄花是多少朵?”让学生选择合适的方法解答。通过复习回顾,勾起学生对原有解决问题的思维方法的回忆,为学习新知做好准备。
活动二:自主探索,解决问题。出示稍复杂的关系句:大雁塔的高度是小雁塔的2倍少22米。读关键句后,不急着列出等量关系,也不急着列方程。先分析情境中包含的数量有哪几个,找出来。再找出各个数量之间的相等关系,写出你想到的关系式。接着学生讨论交流数量之间相等关系的正确性(可以运用摆老师课前提供的图片、也可以画线段图等来解释数量关系的正确性)。再接着出示完整例题,学生依托刚才找到的等量关系,选择合适的方法列出等式,不要解答。最后及时比较。学生原有的认知习惯是利用四则运算的方法解决应用题,对于方程这一新思路,剛开始时会有一定排斥,所以在教学中使学生能通过对两种方法(算术方法和方程方法)的比较,感受到算术方法是需要逆向思考的,考虑起来非常困难,一般只有一种方法解答,而方程的方法却比较顺畅。只要按照题目中的意思,就可以列出方程,而且还可以有多种方法。只有抓住有利于方程优势发挥的点,才能更有效地进行方程思想的渗透,使学生充分体验到它的快捷,并能逐渐认识到这种思路有着与众不同的特点。接着还可以在各种方程的比较过程中让学生感受顺着题意找到数量之间的相等关系最容易解决问题。
活动三:练习巩固。第一层次:在题材的选题方面,我认真筛选出那些适合用方程去解(用算术方法解较难)、能让学生体会到方程优越性的问题,让学生领悟到方程作为解决问题的工具是人类在认识数学上的一大进步,是解决问题的一种有效的常用策略。同时,这些思想也需要在变式中让学生领悟。比如,通过比较利用梯形面积公式列方程求高和直接列算式求高,就能让学生体验到算式方法需要逆向思维,每一步都要进行具体分析并给出合理的解释,难度大且易错,而一旦将高用字母表示并和已知数一样参与运算,就很容易建立方程,逆向思维的过程被解方程的程式化演算所替代。第二层次:提供一组对比题,与例题的类型差不多,但是需要学生通过这组题感受解题方法之间的差异,即何时用方程、何时用算术方法,其实是要根据数量之间的相等关系里面的具体量而定的,如果关系式里面的量未知,则用方程解,如果关系式里面的量已知,就可以直接用算术方法解,通过辨析,让学生自然明白使用方程的道理,这比教师硬性规定的效果肯定要好得多。
整节课三块活动的设计立足于找等量关系、列方程的训练(不要求解方程),把分析关系与求解应用题分离开来,使学生的注意力集中到等量关系上来,而不是急于求到结果。随着课程的深入,学生碰到问题时就能逐渐主动思考数量之间的相等关系,以促使学生养成良好的思维习惯,用关系思维来列方程解决实际问题。
为了找到数量之间的相等关系,还可以引导学生用不同的表征来分析题意:如摆图、画线段图,甚至可以用认真读题的方法,对题目中的关键句(关系句)进行圈划批注。通过试教,我很明显地感到,学生使用表征来帮助理解题意之后,数量关系的正确率大大地提高了。重视图示表征并帮助儿童利用多种表征形式(口头的、图形的、文字的或符号的)来理解同一关系情境,以及促进对这些表征之间等量关系的理解,是促进代数思想和代数理解发展的重要途径。
对于简单问题,学生能很快说出数量之间的相等关系,并根据这些相等关系找到相应的方法来解决。对于较复杂的问题,我们引导学生根据关系句、表征来分析数量之间的相等关系,然后再找到相应的方法解决问题。这条主线,应该成为今后解决任何问题的一般方法。找到等量关系还有以下一些特殊的途径:按照事情发展顺序、几何图形的推导公式、常见的数量关系、根据条件中的不变量等等。当然,学生要能充分感受,仅仅通过一节课是做不到的,需要大量的练习才能逐步积累快速找到各种数量间相等关系的经验。
“数学教学不能满足于单纯的知识灌输,而是使学生掌握数学最本质的东西,用数学思想和方法统串具体知识、具体问题的解法,循此培养和发展学生的数学能力。”因此,我们要在教学中充分认识“方程”这一内容的教学价值与地位,让学生对实际问题中数量之间的关系建立敏感性,从学生的角度来逐步感受方程解题的优越性,增强学生用方程方法解决问题的意识和能力,丰富学生解决问题的策略,帮助学生加深理解方程是一种重要的数学思想方法,使学生的数学素养得到更好的发展。
列方程解决实际问题(2)原来是六年级上册第一单元的内容,现在改为五年级第九单元的内容。这部分的内容我看了一下进度表大约在5月的中下旬上完。虽然只提前了3个月,但是我发现学生掌握起来非常的差,不知与这是否有关。
本节课重点是列方程解决实际问题,重中之重是数量关系的分析,开始学的时候我非常重视列方程解答问题的步骤的训练,记得在第一单元,教学列方程解决实际问题(1)的时候,经过一段时间的学习,学生能够有序思考、有条理地解决问题。但这一单元从开始学的时候就感觉像拉大锯一样费劲,讲完的内容学生似乎都不明白。再加上我一贯的作风——节奏慢,我总是要到全班学生都心领神会了,我才放心地进入下一环节;导致这一部分的内容上了的时间比原来多一倍。但我不后悔。培养学生怎样听别人讲、怎样回答问题、怎样讨论,再一次成为了重要的问题。
本节内容,我自己感觉唯一做的比较好的是,对追及问题的处理,之前我先进行了学情分析,知道学生对这类问题很生疏。在课上我先让两个学生分别进行了相向、相对、追击问题的实际情况。《补充习题》上也有这类问题,课上做了一个追及问题之后,最好接着练习一个同类型的问题,这样这个新知识才会学得扎实。
这节课是在五年级学生刚刚经历了等式的性质的学习和解简单的方程的基础上进行的,本节的重点是:如何分析实际问题中的数量关系和综合运用方程知识解决实际问题。难点是:找到题目中未知量与已知量之间的数量关系、等量关系,掌握形如ax+b=c,ax-b=c的方程的解法。人民小学的五年级学生基础知识非常扎实,不仅能熟练地解决已学的一步计算的简单方程,而且,根据课堂上练习时的观察,一半的学生在新授之前已经掌握了ax+b=c,ax-b=c的解法。从课堂发言看,这些学生并不是运用等式的性质来解方程,有的班级学生学会了移项的方法解题,有的是根据等式中各个量间的关系来解方程,比如2x-22=64,部分学生把2x看作被减数,运用被减数=减数+差的关系式得出2x=64+22后,轻松解答方程。可见不少班级老师已经在教学时拓展了更复杂的方程的解法。再经过共同学习后学生已经熟练地掌握形如ax+b=c,ax-b=c的方程的解法。但找到题目中未知量与已知量之间的数量关系、等量关系仍然是学生学习的难点,许多学生能顺利列出方程但是对等量关系式却表达不清,这种现象在历年的教学中均有体现。
用方程解决生活中的问题,关键在于让学生能正确寻找问题中的数量关系式。掌握了数量关系式,问题便可迎刃而解。学生在以前的学习中缺乏这样的训练,对如何分析数量关系没有一定的基础和经验。在例1教学时,学生找等量关系的时候还是比较困难,究其原因,大多是直接把大雁塔和小雁塔的高度比较,而没有和小雁塔高度的2倍去比较。等量关系犹如解题的拐杖,一定要让学生认真审题,仔细分析。这就需要教师恰当地引导。我认为教学中要做到:
一、抓住关键句提高学生的分析能力。
解决实际问题首先要引导学生分析题目的条件和问题,找出题目中的关键句,根据关键句找出题目中的直接的相等关系,这样可以便于学生列出方程,解答问题。如:例1中的关键句:“大雁塔的高度比小雁塔高度的2倍少22米”,根据这句话学生的思维就会直觉的写出这样的相等关系:“大雁塔的高度=小雁塔的高度×2-22”。(学生的表现也验证了这是学生最容易想到的数量关系式。)再引导学生找出已知量与未知量,根据等量关系式列出方程。
通过学习和思考,学生就会很快掌握类似这样的“一个数比另一个数的几倍多几(或少几)”的实际问题,就会根据自己的理解和直觉思考 “一个数=另一个数×倍数±几”这种相等关系。因此学生如果学会抓住关键句分析与思考,能很快提高我们的课堂教学的效率,提高学生的解题能力,对学生的直觉顿悟思维有很大的促进作用。
二、重视互动交流,提高学生表达能力。
在分析关键句的同时,我们不能仅仅局限于会解答实际问题的层面上,要通过找出关键句、分析关键句、交流关键句等手段,提高学生的思维能力,让学生在学习的过程中关注他人的方法和过程,理解他人的思维方法,通过交流与学习相互补充和提高。因此,在教学这部分知识的同时,还应指导学生通过互帮互学,在交流中促进学生思维的有效组织与思考,便于学生很好的组织自己的语言,理清自己的思维,互相促进,共同提高。
(教学本课后,我还有一个想法:在例2的教学中将引导学生通过画线段图来理解数量之间的等量关系。那能否在例1教学中也灵活运用这样的方法呢?我想一定能促进对学生对数量关系的分析。今后将在教学实践中试行。)
一、工程问题
例1 甲工人与乙工人生产同一种零件,甲每小时比乙多生产8个,现在要求甲生产出168个这种零件,要求乙生产出144个这种零件,他们两个人谁能先完成任务呢?
解:设乙每小时生产x个零件,则甲每小时生产(x+8)个零件.则乙生产144个这种零件需小时,甲生产168个这种零件需小时.
∴-=-
==
==,
∵x>0,∴ x(x+8)>0,
∴当x>48时,乙先完成任务;
当x=48时,两人同时完成任务;
当x<48时,甲先完成任务.
点评:(1)利用求差来比较两个数的大小,是比较大小的一种常用方法;(2)当求差的结果无法直接与0比较大小时,则必须讨论各种可能出现的情况.
二、利润问题
例2 某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销.商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.
(1)该商场两次共购进这种运动服多少套?
(2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?(利润率=×100%).
解:(1)设商场第一次购进x套运动服,由题意得:-=10,解方程得x=200.
经检验,x=200是所列方程的根.2x+x= 2×200+200=600.所以商场两次共购进这种运动服600套.
(2)设每套运动服的售价为y元,由题意得:≥20%,解不等式,得y≥200,所以每套运动服的售价至少是200元.
点评:本题反映出售价、进价、利润之间的关系,解答此问题需要弄清总利润与销售量之间的关系.
三、捐赠问题
例3 为了援助在校贫困学生,兰州某中学师生自愿捐款,已知第一天捐款4800元,第二天捐款6000元,第二天捐款的人数比第一天多50人,且两天的人均捐款数相等,那么两天共参加捐款的人数是多少?人均捐款多少元?
解:设第一天捐款x人,则第二天捐款(x+50)人,由题意列方程=.
解得x =200.检验:当x =200时,x(x+50)≠0,∴x=200是原方程的解.两天的捐款人数x+(x+50)=450, 人均捐款=24(元).
答:两天共参加捐款的有450人,人均捐款24元.
点评:解答分式方程问题的关键有两点:(1)挖掘题意中的相等关系,并根据相等关系列出分式;(2)根据题意确定运算的类型,最后根据法则进行计算.
四、决策问题
例4 某中学库存960套旧桌凳,将之修理后捐给贫困山区学校.甲、乙两个木工小组都想承揽这项业务.甲小组单独修理这批桌凳比乙小组多用20天;乙小组每天比甲小组多修8套;学校每天需付甲小组修理费80元,付乙小组120元.
(1)甲、乙两个木工小组每天各修理桌凳多少套?
(2)在修理桌凳的过程中,学校要委派一名维修工对质量进行监督,并由学校负担他每天10元的生活补助.现有下列三种修理方案可供选择:①由甲单独修理;②由乙单独修理;③由甲、乙合作修理.你认为采用哪种方案既省时又省钱.
解:(1)设甲小组每天修理桌凳x套,则乙小组每天修理(x+8)套.
依题意,得-20=.
去分母、整理得x2+8x-384=0.
解得x1=-24,x2=16.
经检验均是原方程的根.但x1=-24<0,不合题意,舍去,此时x2=16,x+8=24.
所以甲小组每天修理桌凳16套,乙小组每天修理桌凳24套.
(2)若由甲小组单独修理,则需:=60(天),总费用为:60×80+60×10=5400(元);若由乙小组单独修理,则需=40(天),总费用为:40×120+40×10=5200(元);若由甲、乙两小组合作,则需=24(天),总费用为:24×(80+120)+24×10=5040(元).通过比较,选择第三种方案既省时又省钱.
点评:(1)从题目中可获得如下等量关系:甲小组单独修理桌凳所用的天数-20=乙小组单独修理桌凳所用的天数.根据上面的数量关系,设适当的未知数,列分式方程便可求解;(2)分别计算各方案所需的费用及时间,进行比较就可确定最优方案了.
五、行程问题
例5 “五·一”期间,九年级一班同学从学校出发,去某景区水洞游玩,学校与景区水洞间的距离如图1所示,同学们分为步行和骑自行车两组,在去水洞的过程中,骑自行车的同学比步行的同学少用40分钟,已知骑自行车的速度是步行速度的3倍. 图1
(1)求步行同学每分钟走多少千米?
(2)图1是两组同学前往水洞时的路程y(千米)与时间x(分钟)的函数图像.
完成下列填空:①反映骑车组的函数图像是线段 ;
②已知A点的坐标为(30,0),则B点的坐标为( ).
分析:(1)根据图像可知学校与水洞之间的距离为6千米,设步行同学每分钟走x千米,则骑自行车的同学每分钟走3x千米,列方程求解即可.(2)问题的全部信息都隐藏在一次函数图像中,从图形可以看出,线段AM表示从第30分钟才开始出发,而且早于ON到达终点,因此线段AM就是骑车同学的函数图像,骑车同学所用的时间为6÷=20分钟,所以B点的坐标为(50,0).
nlc202309012237
解:(1)设步行的同学每分钟走x千米,则骑自行车的同学每分钟走3x千米.根据题意,得:=+40,解得x=,经检验,x=是原方程的解.
答:步行同学每分钟走千米.
(2)①AM,②(50,0).
点评:本题将分式方程与一次函数的图像结合起来,通过函数图像提供解题信息,只有正确理解函数图像的意义,准确读出信息,才能迅速准确地解决问题.
六、几何问题
例6 如图2,某村计划开挖一条长1500米的水渠,渠道的横断面为等腰梯形,渠道深0.8米,下底宽1.2米,坡角为45°.实际开挖时,工作效率是原计划的1.2倍,结果比原计划提前4天完工.求原计划每天挖多少立方米?
图2
解:渠道的横截面的面积为(1.2+0.8+ 0.8+1.2)×0.8=1.6m2,水渠的体积为1.6×1500=2400m3.
设原计划每天挖xm3,则实际每天挖1.2xm3,根据题意得-4=
解这个方程得x=100
经检验:x=100是原方程的解且符合题意.
答:原计划每天挖100立方米.
点评:题中等腰梯形的面积×水渠的长度=所挖土的总量,根据工作时间=工作总量÷工作效率以及关键语“比原计划提前4天完工”,可列出方程求出解.
七、水电节能问题
例6 为了节约用水,某市物价局于2015年8月20日举行了市民用水阶梯价格分级用量听证会,并提出超量加价.若民用自来水水费调整为每月用水量不超过15m3(包括15m3)时,则按规定标准2.8元/m3(含污染费和排污费)收取;若每月用水量超过15m3,则超过的部分按3.8元/m3收费(含污染费和排污费).
(1)小敏家为了响应政府节约用水的号召,决定从2015年9月起计划平均每月用水量比2014年9月到2015年8月平均每月用水量减少4m3,这使小敏家在相同的月数内,从计划前180m3的用水量变为计划后132m3的用水量,求小敏家从2015年9月起计划平均每月的用水量;
(2)小敏家从2014年9月到2015年8月这一年中,有四个月的用水量超出现在计划月平均用水量的20%,有四个月超出现在计划月平均用水量的50%,其余四个月的用水量与2014年9月到2015年8月的平均每月用水量相等.若按新的交费法,求小敏家从2014年9月到2015年8月这一年中应交的总水费.
解:(1)设小敏家计划平均每月的用水量是xm3,则计划前每月的用水量为(x+4)m3,由题意得=,解得:x=11
经检验:x=8.25是原方程的解,即小敏家计划平均每月的用水量是11m3;
(2)计划用水量为11m3,
超过计划用水量的20%时,用水量=11×(1+20%)=13.2m3,
超过计划用水量的50%时,用水量=11×(1+50%)=16.5m3,
设2014年9月到2015年8月的平均每月用水量为a,
则13.2×4+16.5×4+4a=12a,
解得:a=14.85,
则应交水费为:12×14.85×2.8=498.96(元).
答:小玲家从2014年9月到2015年8月的这一年中应共交水费498.96元.
点评:本题考查了分式方程的应用。解答本题的关键是读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程再求解.
上期《直线、射线、线段与角的巩固练习》参考答案
1.C;2.B;3.B;4.D;5.130;6.6,2,4;7.60;8.45°;9. (m+n)或(m-n);
10. 解:设BC=xcm,由题意得
AB=3x,CD=4x.
∵E、F分别是AB、CD的中点,
∴BE=AB=x,CF=CD=2x,
∴EF=BE+CF-BC=x+2x-x.
即x+2x-x=60 解得x=24
∴AB=3x=72cm,CD=4x=96cm
11. (1)证明:∵AD∥BC,∴∠AEB=∠EBC.
由BE是∠ABC的角平分线,
∴∠EBC=∠ABE,
∴∠AEB=∠ABE,∴AB=AE;
(2)由∠A=100°,∠ABE=∠AEB,
得∠ABE=∠AEB=40°.
由AD∥BC,得∠EBC=∠AEB=40°.
12. 解:∵AC=4,BC=4,∴AB=8,
∵△CDE为等腰直角三角形,且点E不在边BC所在的直线上,
∴可分以CD为腰和底边两种情况,
(1) 以CD为腰,图略,可延长AD至E′,使得DE′=CD,
作OF⊥于AD于F,连接CE′、OE′,根据矩形的性质,易得OF=AB=4,DF=2,
∵△CDE′为等腰直角三角形,
∴CD=DE′=8,
∴E′F=10,根据勾股定理,在△OFE′中,OE′2=OF2 +FE′2
∴OE′==2
(2)以CD为底,图略,分别将点C、点D以顺、逆时针旋转45°交于点E,便是以CD为底边的等腰直角△CDE.
连接OE交CD于点G,
∵OD=OCDE=CEOE=OE,
∴△OCE与△ODE是关于OE对称,且OG、GE分别是△OCD、△CDE的垂直平分线,
∴DG=CG=4,
∵矩形ABCD的对角线AC、BD相交于点O,AC=4,∴AO=CO=2,
∴OG==2
在等腰直角△DGE中,GE=DG=4,
∴OE=OG+GE=6.
上期《整式的乘法与因式分解》拓展精练参考答案
1.A;2.D;3.C;4.C;5.B;6.8;7.x(x-2)2 ;
8.22010 ;9.a+b=0;10.;
11.b=,原式=3x3-x+;
12.解:(1)(x2y)2n=x4ny2n=(xn)4(yn)2=144
(2)32a-4b+1=(3a)2÷(32b)2×3=27.
13.解:(1)∵x2-2xy+2y2+6y+9=0,
∴(x2-2xy+y2)+(y2+6y+9)=0,
∴(x-y)2+(y+3)2=0,
∴x-y=0,y+3=0,∴x=-3,y=-3,
∴xy=(-3)×(-3)=9,即xy的值是9.
(2)∵a2+b2-10a-12b+61=0,
∴(a2-10a+25)+(b2-12b+36)=0,
∴(a-5)2+(b-6)2=0,
∴a-5=0,b-6=0,∴a=5,b=6,
∵6-5 ∴△ABC的最大边c的值可能是7、8、9、10. (3)∵a-b=8,ab+c2-16c+80=0, ∴a(a-8)+16+(c-8)2=0, ∴(a-4)2+(c-8)2=0,∴a-4=0,c-8=0, ∴a=4,c=8,b=a-8=4-8=-4, ∴a+b+c=4-4+8=8, 即a+b+c的值是8. 一、中学数学应用题教学应渗透数学建模的思想方法 为了提高学生解应用题的能力,常见的做法是猜题、抓题型,其结果是面面俱到,但最终却一无所获,对问题情境开发的应用题的教学真正的思想方法是数学建模,即用数学符号或记号去表示事物的状态或特征,并且从普通语言中寻找数量关系,用数学语言将其表示出来,以建立数学模型,这是数学建模的关键也是难点。 在进行《一元一次方程的应用之行程问题》教学中,教师利用一个生动的小视频来进行情境探究:观看一个发生在学生中间的生活片段:视频《小强能追上小亮吗?》教学中,激发学生的热情和强烈的探索欲望,教师给予学生充足的时间去探索研究,鼓励学生大胆陈述自己的见解,使每一个学生都有展现自我的可能。师生互相补充和启发会有越来越多的发现,会对本题有更深刻的了解,于是师生共同总结本题包含的几个过程。学生在此探索和交流后,鼓励其阐述想法和思路,假设能追上,通过比较假设情况下与通常情况下的路程或时间加以验证,这种退一步海阔天空的方式将会给学生新的启迪,接下来再给学生时间自主探究,解决问题。 二、中学数学应用题教学,应该注重它的发生发展并应用的教学过程 有很多老师给我讲过同样的一句话:应用题我都讲了千百遍,学生的应用意识一点也不见增强,遇到应用题总是一筹莫展。这种情况除了没有正确地讲清数学建模思想之外,还有一点那就是没有注意应用题发生的实际背景,新课改下的数学教材特别注重从学生已有的生活经验出发,让学生亲自经历将实际问题抽象成数学模型并进行解释与应用的过程,因此我们应该在概念的生成、命题的获得上下功夫,弄清知识的来龙去脉,让学生主动地寻求其实际背景,才能为知识的应用找到生长点,也才有可能进一步探索其应用价值,体会数学的应用价值。 本节课中我设计的第二个环节就是选择学生的方法,逐一展开,请学生结合线段图,阐述自己的方法。通过比较,得出结论,教师加以肯定。以上探索活动中鼓励学生大胆陈述自己的见解,出现问题或错误让学生之间相互辨析,教师不限制学生的思考。随着教学的深入,这种体验也会越来越丰富,最后成为学生固有的认知,无声的体验比有声的总结更有价值。 三、数学应用题教学,应设计灵活的形式,加深学生理解 在教学中应鼓励学生多方收集数学应用的实例,参与数学实践活动,主动寻找其中与数学有关的因素,从数学的角度描述、刻画它们。只有我们从数学的角度进行探索、研究,才能从根本上理解应用题的实际背景,建立相关模型,为我们解应用题提供感性经验和理性思考。 在第三个环节中教师展示另外两种做法,请学生辨析,加深学生的理解和思考。学生联系实际,出主意,想办法。教师引导学生冷静思考:你是否完全赞同以上方案或设想?有没有同学提出疑问?开放问题中,在激发学生热情开创学生创新思维的同时,更能启示学生遇到问题要勤动脑,敢质疑,多方位考虑问题。 “让每个学生都学会有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展”。总之,初中数学应用题的教学难度很大,但我们只要掌握科学的教学方法,充分利用学生已有的生活经验,随时随地引导学生把所有的数学知识应用到生活中去,努力为学生应用数学知识创造条件和机会,引导学生主动提出问题,解决问题,就可较好地完成初中数学应用题的教学。作为教师的我们在数学应用的教学中要重视学生的意识和能力的培养,让每一位学生都能掌握“有用”的数学。 摘要:应用题是中学生了解数学应用的一个窗口,是培养学生数学应用意识、领会数学建模思想和方法的重要途径,也是提高解决实际问题能力的有效载体.但是,应用题的教学是初中数学教学中的一个难点,应用题的应用性较广,题型灵活而形式多变,对于初中生来说应用题解题思路较难把握。因此,中学数学应用题教学应渗透数学建模的思想方法,中学数学应用题教学,应该注重它的发生发展并应用的教学过程,应设计灵活的形式,加深学生理解。 【列方程解决行程问题教学设计】推荐阅读: 列方程解决问题11-12 《列方程解决相遇问题练习课》教学设计02-28 第一单元《用方程解决实际问题》的教学设计06-30 用方程解决相遇问题10-16 练习414.3用方程解决问题06-13 实际问题与列方程06-15 列方程解稍复杂应用题教学反思12-04 列方程解应用题免费09-25 列方程解应用题及答案10-15 列方程解应用题练习题03-08列方程解决行程问题教学设计 篇12