四年级下册鸡兔同笼练习课教案

2025-03-05 版权声明 我要投稿

四年级下册鸡兔同笼练习课教案(精选10篇)

四年级下册鸡兔同笼练习课教案 篇1

教学内容: “鸡兔同笼”练习.教学目标:

1、使学生进一步了解问题,感受问题的趣味性与多样性。

2、使学生能较熟练地运用不同的方法解决 “鸡兔同笼”问题。

教具准备:多媒体课件。教学过程:

一、问题引入,回顾再现。

1.小知识:“鸡兔同笼”是一类有名的中国古代算数题。最早出现在《孙子算经》中。许多小学算术应用题都可以转化成这类问题,或者用解它的典型解法--“假设法”来求解。因此很有必要学会它的解法和思路。你知道解决“鸡兔同笼”问题有几种方法吗?并通过比较发现它们有什么特点?

列表法:适合数据较小的问题; 假设法:比较简捷,但不太容易想得到;

列方程法:虽然书写上麻烦了些,但容易理解,具有一般性; 2.猜一猜:师:(出示一个信封)老师这儿有一个信封,谁能猜出信封里放的是什么吗?

生1:邮票。生2:钱。师:猜得真准,这信封里装的就是钱,放了5元和2元的钞票,共8张,你能猜出信封里的钞票一共有多少钱吗?

师:你能猜出大致的范围吗? 生:我觉得应该在16元到40元之间。师:就在这个范围内!你是怎么猜的?

师:信封里一共放了34元钱,你们能猜出信封里放了几张5元和几张2元的吗?

二、分层练习、强化提高

(一)基本练习。

帮助学生建立解决“鸡兔同笼”问题的模型(以书P116的第1题为例题)

1、学生独立用列方程法解决;

2、探讨用假设法解决:(1)学生小组探讨;(2)小组汇报探讨结果;

(3)集体讲解,帮助学生建立用假设法解决这类问题的模型。

(二)综合练习。

1、用列方程法完成练习二十六的第2题。

2、用假设法完成练习二十六的第3题;

三、自主检测,评价完善

完成练习二十六的第4题、第7题

四、归纳小结、课外延伸

1、教师:这节课我们做了这么多题,你有什么感受和收获? 指生说一说感受和收获,教师总结。

2、课外延伸

四年级下册鸡兔同笼说课稿 篇2

【地位和作用】

思考——人教版实验教材增设数学广角这一单元的目的是什么?鸡兔同笼问题设置在数学广角中,其教学与常规课有什么不同?

分析——《教学用书》中指出:数学广角重在向学生渗透一些数学思想方法,并初步培养学生有顺序地、全面地思考问题的意识。因此,“鸡兔同笼”问题作为数学广角教学内容之一,正是教材注重渗透思想方法,关注学习过程的重要体现。教材借助我国古代趣题“鸡兔同笼”问题,让学生应用列表、假设、方程等多种方法来解决问题。本课的教学与常规课相比,区别之处在于要把数学思想方法贯穿始终,巧用素材,有效提升,为学生的终身发展奠定基础。本课时中,学生可以根据自己的经验,逐步探索不同的方法,找到解决问题的策略,在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的方法。

【编排的内容】“鸡兔同笼”问题是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。但其原题数据比较大,不利于首次接触该类问题的学生进行探究,因此教材先编排了例1,通过化繁为简的思想,帮助学生先探索出解决该类问题的一般方法后,再解决《孙子算经》中数据比较大的原题。

解决“鸡兔同笼”问题时,教材展示了学生逐步解决问题的过程,既猜测、列表、假设或方程解。其中假设和列方程解是解决该类问题的一般方法。“假设法”有利于培养学生的逻辑推理能力,列方程则有助于学生体会代数方法的一般性。因此在解决“鸡兔同笼”问题时,学生选用哪种方法均可,不强求用某一种方法。

配合“鸡兔同笼”问题,教材在“做一做”和练习中安排了类似的一些习题,比如“龟鹤”问题,生活中的一些实际问题等,让学生进一步体会到这类问题在日常生活中的应用,并巩固用“假设法”或方程的方法来解决这类问题。

二、说学情

【认知分析】学生初步已接触多种解题策略,会一些基本的解决数学问题的方法。

【能力分析】虽说学生已经初步尝试了应用逐一列表法解决问题,还有一些学生在课外书中或者数学班已经学习了相关的内容,但学生的程度会参差不齐,但在数学方法的应用意识与数学思维的自我提升等方面尚需进一步培养。

【情感分析】多数学生对数学学习有一定的兴趣能够积极参与研究,但在合作交流意识方面,发展不够均衡,有待加强;少数学生的学习主动性不够强,尚需通过营造一定的学习氛围,来加以带动。

三、说目标

【教学目标】

1、经历和体验用不同的角度与方法解决实际问题的过程,进一步体会奥数的乐趣。

2、培养学生动脑筋,解决实际问题的意识,增强学生的数学应用能力。

3、了解我国古代数学的光辉成就,增强民族自豪感;提高学生对数学的好奇心和求知欲;增强学数学的自信心。

【教学重点】用假设法来解决鸡兔同笼问题。

【教学难点】如何让绝大部分孩子掌握用假设法来解决这一相关问题。

四、说教法

综合以上的分析,从面向全体学生,发展学生认识问题、探索问题、研究问题的能力角度考虑,准备采用“以问题为中心”的讨论发现法:即课堂上,教师或学生提出适当的数学问题,再由学生尝试着去发现规律,通过相互讨论,相互学习,在问题解决过程中提升数学方法,从而丰富学生的数学思想,逐步建立完善的认知结构。

五、说学法

两点想法:

低起点:让每一个学生都积极参与。课伊始,我让学生钱的数额和张数。数据比较小,学生又有一定的情趣,容易激起学生学习的兴趣,使他们积极地参与课堂学习。教学例题时,因为有了以上的铺垫,就让学生尝试解决,学生在解决时,方法多种多样,列表凑数的、画图的、假设法、列方程解决。

巧突破:重点就放在假设法的教学上,先通过表格初步感知规律,再借助图形结合来攻破学生学习中思维中的障碍。

基于以上分析,在学法上,引导学生采用适度指导与自主探索相结合、独立思考与互相协作相结合的学习方式,尽量让每一个学生都能参与研究,并最终学会学习。

六、说理念

四年级下册鸡兔同笼练习课教案 篇3

教学内容:人教版《义务教育课程标准实验教科书·数学》四年级下册。教学目标:

1.了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

2.尝试用不同的方法解决“鸡兔同笼”问题,使学生体会假设和代数方法的一般性。3.在解决问题的过程中,培养学生的思维能力,并向学生渗透转化、函数等数学思想和方法。教学重点:用假设法解决“鸡兔同笼”问题。教学具准备:课件。课前交流

师:同学们小时候玩过过家家的游戏吗?

生:玩过。

师:老师想和你们做一个“开心宠物店”的过家家游戏。请看演员表(多媒体出示)师:女同学扮演小鸡,男同学扮演小兔,谁来说说小鸡和小兔最大的区别在哪里? 师:是的,我们就让女同学垂首站立扮演小鸡,男同学抬起双手扮演四条腿的小兔。听好老师要求。3头6足

师:有几只鸡?几只兔? 生:3只全是鸡,没有兔。师: 3头8足

一、创设情境,生成问题

师:其实刚才游戏蕴含着一类数学问题。今天让我们穿越是空的隧道,回到1500年前,打开数学名著《孙子算经》,一起去看一看书中记载的一道有趣的数学问题。师:谁来读一下这道题?

二、探索交流、解决问题 1.出示原题

师:今有雉(zhi)兔同笼,上有三十五头,下有九十四足,问雉兔各几何?(1).理解题意

师:同学们知道这道题的意思吗?请试着说一说。

生:这道题的意思是——鸡和兔在一个笼子里,从上面数有35个头,从下面数有94只脚,问鸡和兔各有多少只?

师:这道题的意思正如同学们所想的一样,也就是:(课件出示)笼子里有若干只鸡和兔,从上面数有35个头,从下面数有94只脚,鸡和兔各有多少只?

(2).揭示课题

师:这就是今天这节课我们一起要研究的鸡兔同笼问题(板书:鸡兔同笼问题)(3).理解题意

师:从这道题中你获取哪些数学信息呢?还有呢?

生:有35个头,(35个头表示什么意思?)有94只脚。一只鸡2只脚,一只兔子4只脚。师:同样是问你几只兔和几只鸡,你们觉得刚才这道题和我们做的游戏相比怎么样? 生:太难了,数太大。2.出示例1 师:为便于研究,我们可以化繁为简,把题中的“35个头”和“94只脚”分别换成“8个头”和“26只脚”,就变成了例1:笼子里有若干只鸡兔。从上面数,有8个头,从下面数,有26只脚,3.探索策略(1)猜想法

师:鸡和兔各有几只呢?请同学们独立的想一想,猜一猜。也可以同桌交流交流。生1:3只兔,5只鸡。

生2:6只鸡,2只兔;7只鸡,1只兔;5只兔,3只鸡。

师:伟大的科学家牛顿曾说过:“有了大胆的猜想才会有伟大的发明和发现”。同学们猜的对不对,不妨验证一下。如何验证呢? 师:你们觉得用猜想法解决鸡兔同笼问题好不好?

生:不是很容易猜出正确答案,而且当头和脚的只数越多时,越不容易猜出答案。师:看来,我们还有研究新方法的必要。(2)列表法

师:刚才,我们是在随意猜,其实还可以有顺序的来猜。(课件出示下面的空白表格)师:如果先猜有8只鸡和0只兔,就有16只脚;再猜有7只兔和1只鸡,就有18只脚;然后,按照这样的顺序猜下去就可以猜出来。如果先猜有8只兔和0只鸡,这样就有32只脚,这样猜下去也能猜出来。(教师按照顺序点击课件,逐步完成上表。)师:按顺序列表的方法,也就是用列表法解决了这个问题。请仔细观察表格,你能发现什么?小组讨论把你们的发现记录下来。

师:看到你们说得那么高兴,老师都想听了。谁愿意把你的发现跟大伙说说? 生1:我发现鸡在减少,兔在增加,脚也在增加。

生2:我发现每减少1只鸡,增加1只兔,脚的总只数增加2只。生3:我发现鸡和兔的总只数没有变。

生4:我发现每减少1只兔,增加1只鸡,脚的总只数减少2只。

师:看来大家都有一双善于发现的眼睛。大家都发现了在鸡和兔的总只数不变的情况下,每增加1只兔、减少1只鸡,脚的总只数增加2只;反之,每减少1只兔,增加1只鸡,脚的总只数减少2只。这个2是怎么来的呢?

生:因为1只鸡有2只脚,1只兔有4只脚,1只兔比1只鸡就多出了2只脚,也就是用4-2=2算出来的。

师:看来大家还有一个会思考的大脑。通过列表,你们觉得用列表法解决鸡兔同笼问题怎么样?

生:当头和脚的只数较多时,用列表法和猜的方法还是不容易找出答案,那么我们能不能找到一种更快,更便捷的方法。(3)假设法 ①假设全是鸡

师:我们先从表格中右起的第一列,8和0是什么意思?

生:就是有8只鸡和0只兔,也就是假设笼子里全是鸡,这样就有16只脚。师:实际脚的只数是26只,这样就笼子里就少了10只脚,为什么呢?

生: 用刚才我们发现的规律:在鸡兔总只数不变的情况下,每增加1只兔、减少1只鸡,脚的只数就会增加2只,应该增加5只兔,脚的只数才变成26只,即10里面有5个2。那说明5只就是兔,兔子求出来了,那么鸡就是3只。

师:说得多好哇!为了让大家进一步理解这种方法,下面我们边看图边分析(课件演示)。师:上面的过程能也可以用算式表示出来吗?师板书。师:算出来后,我们还要检验算的对不对,谁愿意口头检验。生:3×2+5×4=26(只),5+3=8(只)。师:看来做对了,最后写上答语。②假设全是兔

师:既然能假设全是鸡,同样的我们能不能假设全是兔呢? 请同桌边讨论边写算式。

(学生讨论写算式,然后指名板演。)

师:这是一位同学写的算式,我们来听听他是怎么想的。

生:假设笼子里全是兔,就有4×8=32只脚,这样就比笼子里实际的脚数多了32-26=6只脚,1只兔比1只鸡多2只脚,这样就有6÷2=3只鸡,也就知道有8-3=5只兔了。课件演示:“假设法” 中假设全是兔的情况。

师:在列表的基础上,我们想到了用假设法。如果假设全是鸡,第一个求出的是兔子,如果假设全是兔,先求出的是鸡。

师:为了大家能够记得更牢。老师把这个过程编了一个顺口溜,请看

鸡兔同笼并不难,设鸡算出兔,设兔算出鸡。设鸡设兔全由你,结果正确你第一。4.小结方法

师:请同学们回忆一下,在解决鸡兔同笼问题时,用到了哪些方法? 生:猜想法,列表法,假设法。

师:现在要你们解决《孙子算经》中原题,你现在会选用哪种方法呢? 师:下面同学们就用自己喜欢的方法解决这个问题。

三、巩固应用内化提高 1.解决原题

学生先独立完成《孙子算经》中的原题,后相互评议。

师:刚才同学们用自己喜欢的方法很快的解决了古人留给我们的问题,其实鸡兔同笼问题也流传到了日本,只不过它不叫鸡兔同笼,而是叫龟鹤问题,请看屏幕。

你认为“龟鹤问题”与“鸡兔同笼”有什么相似之处?

2.看来鸡兔同笼这类问题我们不只局限算鸡和兔的只数问题上,只要能用这个思路来解答的问题都可以统一叫做“鸡兔同笼”问题。下面我们就用刚才学到的“鸡兔同笼”方法,来帮我们解决生活中遇到的一些实际问题。

3、新星小学“环保卫士”小分队12人参加植树活动。男同学每人栽了3棵树,女同学每人栽了2棵树,一共栽了32棵树。男女同学各有几人?

四、课后总结:

四年级下册鸡兔同笼练习课教案 篇4

1、知识与技能

让学生学会“列举法”,并运用“列举法”解决问题。

2、过程与方法

让学生在尝试与猜测的过程中,探索出“列举法”,最终发现一些规律性的知识。

让学生养成“尝试”的数学思维与方法。

3、情感态度与价值观

利用发现的规律,解决生活中的实际问题,体会数学与日常生活的联系,获得成功的体验,增强学习数学的兴趣和信心。

了解中国数学历史,渗透数学文化的思想。

教学重点:

让学生学会“列举法”,并运用“列举法”解决“鸡兔同笼”问题及相类似的数学问题。

教学难点:

让学生在尝试与猜测的过程中,探索出“列举法”,最终发现一些规律性的知识。

教学关键:

让学生经历列表、尝试和不断调整的过程,从中体会出解决问题的一般策略——列表。

教具准备:

三个表格,卡片。

教学过程:

一、导入

1、师:一只鸡有几条腿?一只兔有几条腿?(生齐答)

2、师:(出示卡片:三只鸡两只兔)这个笼子里一共有几个头?(生齐答)一共有多少条腿?(让生独立计算后,再指名说说计算的方法)

3、谈话导入:今天我们就一起来学习“鸡兔同笼”。(师板书课题:鸡兔同笼)

二、授新课

1、师:老师想考考你们,你们看

(师出示:鸡兔同笼,一共有8个头,20条腿,鸡、兔各有多少只?

师:请你赶快猜一猜吧!生:独立思考后全班交流。

(此时,学生很容易猜出,师首先肯定学生的各种想法,再说:我把这题的数字变大一些,你能猜出鸡、兔各有多少只吗?

2、师(出示题目):鸡兔同笼,共有20个头,54条腿,鸡、兔各有多少只?

(1)

a、让生齐读题目

b、师让生独立思考后再与同桌交流。

c、指名汇报(当学生猜不出答案时,师:我给大家带来了一位好朋友,它可以帮助我们解决这个问题,你看)师边说边出示表格)当学生猜出正确答案时,师追问:说说你是怎样想的?根据生的回答完成表格

d、此时,师明确告诉学生:像这样依次尝试的方法我们就叫它一一列举法。(师板书:一一列举法)

e、观察这个表格,你发现了什么?(指名生说)

(2)小结:对于发现的同学及时给予表扬,你真是个善于发现的孩子。

a、我们再来观察一下这个表格,我们从1开始假设时就有78

条腿和答案的54条腿相比,怎么样?我们能不能让列举的次数更少一些?现在就请你们四个人为一小组开始讨论:(讨论后再请小组汇报)

b、根据生的回答,师板书:

c、师小结:你真是个爱动脑筋的孩子,真聪明!那我们也给

这个表格取一个形象的名字,就叫它跳跃式列举法(师板书:跳跃式列举法)

(3)师:还有别的列举法?

a、学生可能会说出取中列举法,师就问让其说清楚,明白。

学生可能说不出时,师出示(先假设鸡和兔各占一半,再列表),再让生试填表格3,最后集体订正。

b、像这样,从中间开始列举的方法叫取中列举法(师板书:取中列举法)

3、观察比较这三种列举法,你喜欢哪种?为什么?(指明生说,师再小结)

4、师:在我们的实际生活中,还有很多类似鸡兔同笼的问题,大家有信心运用所学问题解决实际问题吗?

三、

1、试一试

完成81页练一练第2、3题。(先独立完成再集体订正。)

2、深化练习:一次数学竞赛,共10道题,每做对一道可得8分,每做错一道扣5分,小英最后得41分,她做对了几道题?(此题有时间就做,没时间就不做。)

四、课堂小结:

四年级奥数 鸡兔同笼 篇5

教学内容:第14讲 鸡兔同笼问题

知识网络

鸡兔同笼问题是我国古代数学著作《孙子算经》中的一个流传甚广的数学趣题:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各有几何?翻译成现代汉语语言为:今有鸡兔共居一笼,已知鸡头与兔头共35个,鸡脚与兔脚共94只。问鸡、兔各有几只?这一古老的数学问题在现实生活中普遍存在,解法也多种多样,但一般采用的是假设法。

在解答应用题时,有时要采用“假设”的思想来分析,以找到解题途径。用假设思想解应用题,首先要根据题意去正确地判断应该怎样假设,并根据所做的假设,注意数量关系发生的变化,从所给的条件与变化了的数量关系的比较中做出适当的调整,来找到正确答案。

重点·难点

运用假设法是求解这类可以转化为鸡兔同笼问题的应用题的关键。

学法指导

用假设法解应用题的步骤:一是要根据题意正确地判断怎样“假设”,二是依据假设,按照题目所给的数量关系进行推算,所得结果与题中对应的数量不符时,要能够正确地运用别的已知量加以调整,三是进而得出正确的答案。

经典例题

[例1]一个农夫有若干只鸡和兔,它们共有50个头和140只脚,问鸡、兔各有多少?

思路剖析

鸡兔同笼问题适用的基本方法是假设法。假设这笼里全是鸡,那么鸡脚的总数应为:50×2=100(只),与实际相比较,脚减少的数为140-100=40(只)。脚减少的原因是每把一只兔当作一只鸡时,要少4-2=2(只)脚。所以实际的兔数是40÷(4-2)=20(只),若先假设的全是鸡,则先求出的是兔数。

解答

☆解法一:

设全是鸡,那么相应的鸡脚数:50×2=100(只)与实际相比,脚减少的数:140-100=40(只)

兔脚与鸡脚的差4-2=2(只)

实际兔数为40÷2=20(只)

那么实际的鸡数:50-20=30(只)

答:有鸡30只,有兔20只。

☆解法二:

利用方程求解:

设农夫有鸡x只,那么有免(50-x)只。那么鸡有脚2×x只,兔有脚4×(50-x)只。

列方程为2×x+4×(5-x)=140

解方程2×x+200-4×x=140

2×x=60 x=30

50-x=50-30=20

则鸡有30只,兔有20只。

☆解法三:

(不拘于传统的解法,让我们的思维发散,更具有创造性。)

农夫想知道鸡、兔分别有多少只,他做了一个有趣的设想,就是假设每只兔子又长出一个头来,把它劈开,变成“一头两脚”的两只“半兔”,半免和鸡都有两只脚,因而共有140÷2=70(只)头,从而多出了70-50=20(只)头,这就是兔子的数目,鸡的只数就是50-20=30(只)。

☆解法四:

兔有4只脚,而鸡有2只脚,不过鸡有2只翅膀,如果把翅膀也当作脚,则鸡、兔都有4只脚,于是脚有50×4=200(只),但题中翅膀不算脚,因而有翅膀200-140=60(只),每只鸡有两只翅膀,则鸡数为60÷2=30(只),兔有50-30=20(只)。

☆解法五:

农夫惊讶地看到鸡、兔们非凡的表演:每只鸡都用一只脚站立着,每只兔都用两只后腿站立起来。这种情况下,地上的总腿数是原来的一半,即70只腿,鸡的脚数与头数相同,而兔的脚数是头数的两倍,因此从70里减去总的头数,剩下来的就是兔的头数:70-50=20(只),即有20只兔,那么有鸡30只。

☆解法六:

我们还可以想像鸡、兔们经过专门训练后具有一些“特殊技能”,当它们听到哨音后,鸡飞起来,兔立即双脚站立起来。这时立在地上的应该都是兔,它的脚数:140-50×2=40(只)。因此有免:40÷2=20(只),鸡有:50-20=30(只)。

[例2]现有2分和5分的硬币共40枚,共值125分,问两种硬币各多少放?

思路剖析

利用假设法,假设40枚硬币全是2分的,则面值为80分,与实际相比减少了125-80=45(分),是由于把每个5分硬币少算了5-2=3(分)造成的,则可知有5分硬币45÷3=15(枚)。

解答

设全为2分的,则共值2×40=80(分)

与实际相比少125-80=45(分)

由于假设造成的差值5-2=3(分)

则有5分硬币45÷3=15(枚),2分硬币40-15=25(枚)。

答:有5分硬币15枚,2分硬币25枚。

点津

由假设造成的与实际的差值45分,是与把5分硬币当作2分硬币产生的差值相关的,而不是仅与5分硬币有关。

[例3]某次的小学数学奥林匹克竞赛,共有20道题,评分标准是:每做对一题得5分,每做错或不做一题扣3分。小贝贝参加了这次竞赛,得了68分,问:小贝贝做对了几道题?

思路剖析

假设小贝贝20道题全做对了,他应该得20×5=100(分),比实际上多了100-68=32(分),产生这一差异的原因是把做错或没做的题也算作做对的了,需要注意的是,做错或不做一题比做对一题应少得5+3=8(分),因此小贝贝做错或不做的题数:

32÷8=4(道)。

解答

20-(5×20-68)÷(5+3)

=20-32÷8=20-4

=16(道)

答:小贝贝做对了16道题。

点津

由于做错和不做的题不但不得分,还要扣掉分数,那么与做对一道题相比,就不是简单相减的关系,而应该求和得出。类似于零上5℃与零下3℃相差是8℃,而不是2℃。

[例4]农场工人上山植树造林,绿化祖国,晴天时每人每天植树20棵,雨天时每人每天植树12棵,工人张宁接连几天共植树112棵,平均每天植树14棵。问:张宁植树这些天共有几个雨天?

思路剖析

题目中虽然没有问张宁工作了几天,但总共做了多少天是一个关键量,须先求出来。天数=总量÷平均数=112÷14=8(天)。要求有多少个雨天,可假设每天都是晴天,那么应植20×8=160(棵),与实际相比,多植160-112=48(棵),是把雨天植树量当作20棵造成的,20-12=8(棵)是实际植树量与假设的差值。因此有雨天:48÷8=6(天)。

解答

[20×(112÷14)-112]÷(20-12)

=(160-112)÷8=48÷8

=6(天)

答:张宁植树这些天总共有6个雨天。

[例5]“和尚分馒头”题,记载于我国明代《算法统宗》。现代文译文:大和尚与小和尚共100名,分配100个馒头,大和尚每位给3个,小和尚3个人给1个,问大、小和尚各有多少人?

思路剖析

假设都是小和尚。因为小和尚3个人给1个馒头,分配100个馒头,应该有小和尚3×l00=300(人),比实际多了300-100=200(人)。是由于把大和尚看做小和尚造成的,由于大和尚每位给3个馒头,相当于给9位小和尚的量。由于假设出现的差值即为9-l=8(人),那么大和尚的人数220÷8=25(人)。

解答

(3×100-100)÷(3×3-1)

=(300-100)÷8=200÷8

=25(人)

100-25=75(人)

答:大和尚有25人,小和尚有75人。

点津

本题中给出的条件“大和尚每位给3个,小和尚3个人给1个”,无法直接求出大、小和尚在人数或在馒头数上的差值,需通过条件中给出的比例关系求得。

[例6]四年级某班有学生68人,为了更好地学习,同学们自愿结成了14个学习小组。这些小组有的3人,有的5人,有的7人。而且3人组与5人组的组数相同。问三种学习小组各有几组?

思路剖析

前面的例题中,总体中的数量总是“非此即彼”只有两种,而本题中出现了3种,似乎有些复杂。但题目中有个很重要的条件“而且3人组与5人组的组数相同”,是否可以利用这个条件将此题也转化成我们熟悉的鸡兔同笼题呢?我们将“3人组与5人组组数相同”这个条件,转化为将他们组成4人组,那么组数应为这两组的组数和,因为4是3和5的平均数。

那么分组情况可以看做是两类:4人组和7人组。假设都是4人组,那么应有人数:4×14=56(人),与实际人数的差值:68-56=12(人),由于假设出现的差值:7-4=3(人),则7人组的组数:12÷3=4(组)。

解答

(68-4×14)÷(7-4)

=(68-56)÷3=12÷3

=4(组)

那么3人组与5人组的组数(14-4)÷2=5(组)

答:学习小组中3人组和5人组各有5组,7人组有4组。

[例7]有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿,蜻蜓6条腿、两对翅膀,蝉6条腿、一对翅膀),问蜻蜒有多少只?

思路剖析

依照例6的思路,我们应当将三种昆虫分成两类,从而将题目转化成与鸡兔同笼结构相同的题。分析题中的已知条件,找到可以归成一类的突破口。三种昆虫有两种有翅膀,一种没翅膀,显然不能按此划分。三种昆虫都有腿,而且其中两种腿数相同,与例6思路相同,将三种昆虫按腿数分成两类:8腿虫和6腿虫。假设18只昆虫都是8腿虫,则有腿8×18=144(条),与实际腿数的差值144-118=26(条),由于假设造成的差值8-6=2(条),那么有6腿虫:26÷2=13(只),知道了6腿虫的总数,就可以按翅膀对数再将它们分成两类:2对翅膀和1对翅膀。则又转化成一道鸡兔同笼结构的题目。假设13只昆虫都有2对翅膀,则有2×13=26(对),与实际翅膀数的差值26-20=6(对),由于假设造成的差值2-1=1(对),那么蝉(一对翅膀)有:6÷1=6(只)。

解答

(8×18-118)÷(8-6)

=(144-118)÷2=26÷2

=13(只)„„6腿虫数

(2×13-20)÷(2-1)

=(26-20)÷1

=6(只)„„1对翅膀虫数

13-6=7(只)„„2对翅膀虫数

答:蜻蜓有7只。

点津

恰当地把多组事物根据其特点划分成两类,转化成鸡兔同笼结构的题目是解题的关键。当组数大于2时,有时需要在同一题中解决多于1次的鸡兔同笼结构的题目,才能求得最终结果。

发散思维训练

1.动物园里有一群鸵鸟和大象,它们共有36只眼睛和52只脚,问鸵鸟和大象各有多少?

2.养殖场共养鸡、兔180只,已知鸡脚总数比兔脚总数多180只。问养的鸡、兔各多少只?

3.学校有象棋、跳棋共20副,2人下一副象棋,6人下一副跳棋,恰好可供60个学生进行活动。问象棋与跳棋各有多少副?

4.鸡、兔共有脚140只,若将鸡换成兔,兔换成鸡,则共有脚160只。问原有鸡、兔各几只?

5.老师教同学们练跳绳,若一次能连续跳8个,老师奖给同学4块巧克力;若跳不够8个,则退给老师2块。王芳同学一共练了10次,得到28块巧克力。问王芳有几次没跳够8个?

6.有6个谜语,让50人猜,共猜对了202个。已知每人至少猜对2个,且猜对2个的有5人,猜对4个的有9人,猜对3个和5个的人数一样多,那么,6个全猜对的有多少人?

7.现有大、小水桶共50个,每个大桶可装水6千克,每个小桶可装水3千克,大桶比小桶总共多装水30千克。问大、小桶各多少个?

8.小张是车工,平均每天车某种零件50个,每车好一个正品,可为企业创造财富14元,但车坏一个要损失96元。某天,他为企业创造了480元的财宝,这一天他车出的正品是多少个?

9.模拟考试已举行了24次,共出了试题426道,每次出的试题数不同,或者25题,或者16题,或者20题,那么,其中有25道试题的有多少次?

10.传说九头鸟有九头一尾,九尾鸟有九尾一头。今有头510个,尾590个,问:两种鸟各有多少个?

参考答案

发散思维训练

1.解:

由于每只动物有两只眼睛,由题意可知动物园里鸵鸟和大象的总数为:36÷2=18(只),假设鸵鸟和大象一样也有4只脚,那么脚总数为:18×4=72(只),与实际的差值为:72-52=20(只),由假设引起的差值:4-2=2(只),则鸵鸟数:20÷2=10(只),大象数:18-10=8(头)。

答:鸵鸟有10只,大象有8头。

2.解:

假设180只全是鸡,则兔脚数为0,则鸡脚数比兔脚数多:2×180=360(只),与实际相比:360-180=180(只),由假设造成的差值:2+4=6(只)。

那么实际的兔数是:180÷6=30(只)

鸡数为:180-30=150(只)

答:养的鸡为150只,兔为30只。

3.解:

假设象棋也可供6个人下,则可供6×20=120(人)学生进行活动。与实际相比,120-60=60(人),由假设造成的差值:6-2=4(人)。

那么实际的象棋数为60÷4=15(副)

跳棋数为20-15=5(副)

答:象棋有15副,跳棋有5副。

4.解:

由于鸡换成兔,兔换成鸡,脚的只数增加了20只。故原来的兔比鸡少20÷2=10(只),减去这10只鸡,则鸡、兔一样多,并且共有脚:140-2×10=120(只)。假设鸡、兔各有3只脚(鸡、兔脚数的平均数),那么鸡、兔共有120÷3=40(只),鸡、兔各有40÷2=20(只),实际的鸡数为:

20+10=30(只)。

答:原有鸡30只、兔20只。

5.解:

假设王芳10次都跳够8个,则应得巧克力4×10=40(块)。与实际相比,40-28=12(块)。由于跳不够,不但没得到巧克力,还要返还2块。

那么由假设造成的差值为4+2=6(块)。王芳没有跳够的次数:12÷6=2(次)。

答:没跳够8个的次数为2次。

6.解:

猜谜情况总共有5种,其中已知猜对2个的有5人、猜对4个的有9人,则猜对3、5、6个的人数:50-5-9=36(人),共猜对的题数:202-2×5-4×9=156(个)。

由于猜对3个和5个的人数一样多,可以把他们看作为猜对4个的人。

假设36个人都猜对了6个,那么共猜对的题数为6×36=216(个),与实际相比,216-156=60(个),由假设造成的差值6-4=2(个),则猜对4个的人数:60÷2=30(人),那么猜对6个的人数:36-30=6(人)。

答:有6人全猜对。

7.解:

假设50个桶都是大桶,则共装水6×50=300(千克),而此时小桶装水为0,与实际相比,相差300-30=270(千克)。若将大桶换成小桶,则每换一个,大桶装的水就减少6千克,小桶装的水增加3千克,大桶比小桶多装的重量就减少:6+3=9(千克),那么小桶的个数:270÷9=30(个)大桶的个数:50-30=20(个)

答:大桶有20个,小桶有30个。

8.解:

假设小张这天车出的零件全部是正品,那么应创造的财富为:14×50=700(元),可实际只有480元,其差额是700-480=220(元)。

根据题意:如果车坏一个零件要减少14+96=110(元),那么车坏零件的个数:220÷l10=2(个),零件正品个数:50-2=48(个)。

答:他车出的正品是48个。

9.解:

假设24次考试,每次都是16题,则并考了试题16×24=384(题),与实际考题数相比,426-384=42(题)。而考25题的每次多考25-16=9(题),考20题的每次多考20-16=4(题),这样有9×A+4×B=42,其中A表示考25题的次数,B表示考20题的次数。根据奇偶性分析,A只能是2。

答:考25题的次数是2次。

10.解:

尾数590个大于头数510个,说明九尾鸟多于九头鸟。590-510=80(个),两种鸟的尾数差为9-l=8(个),那么九尾鸟比九头鸟多80÷8=10(只)。除去这10只,剩下九头鸟与九尾鸟的数量相等,为(510-10)÷(9+l)=50(只),九尾鸟有50+10=60(只)。

四年级数学《鸡兔同笼》教学反思 篇6

《数学课程标准》指出数学教学活动必须建立在学生认知发展水平和已有的知识经验之上,以生为本,已学定教,顺学而导,要让学生成为课堂的主人,尊重学生,还课堂给学生,就必须认真钻研教材,领悟编者意图,教材知识地位及前后联系,认真研究学生,了解学生已经知道了哪些知识和解题策略。

在最初设计这课时,我把列举法中的表格画在黑板上,让学生根据条件鸡兔共有8只,先猜测鸡兔可能各有几只填入表格中,再根据另外一条件总脚数是26只,通过验证得到笼子里鸡兔到底有几只,但在我巡视时发现大部分学生都在根据条件无序的猜测,有的同学把猜测的过程简单的记录在草稿纸上,有的干脆就不记录,通过不断地调整最终找到了答案,这样就不能形成完整的表格,更不能引导利用表格发现猜测过程中的规律,用时过长且无法自然的过渡到假设法。所以再次试教,我把这一环节及时做了调整,要求学生把猜测的过程记录在课本的表格上,这样大部分学生会按照一定的顺序进行猜测填表,有的同学逐一填表,有的没填第一列和最后一列,有的跳跃填表,还有同学填出答案后不再继续填表,出现了这么多种不同的结果,反映了不同学生的不同思维高度,既达到了列表教学目标。

二、教学过程执行的反思

这节课教学过程的主线是:出示问题—分析问题—解决问题—建立模型—推广应用。整个教学过程学生自学与他人交流相结合,老师引导与学生探究相结合,用问题推动学生不断思考,让学生参与知识形成的过程,注重学生亲身体验感受。列表法的优点是方法比较简单,但数据比较大时效率低,不能作为解决鸡兔同笼的一般方法进行推广,是不是在教学过程中可以一带而过呢?通过对教材的研究和分析,绝对不能一带而过,表中蕴含了鸡兔头脚变化的规律,把一只鸡看成一只兔就会增加两只脚,这样就和假设法对应起来了,充分分析表格规律,为假设法的教学奠定了基础,在教学假设法时水到渠成降低了难度。在列表时,学生势必要计算出总脚数,在求总脚数时利用到了方程法的等量关系,列表法是基础是纽带,将不同的解决方法联系起来,形成知识的完整体系。

在讲授假设法时,学生最不容易理解4—2=2(条)的意义,试教后决定在充分挖掘表格中的规律,小组合作、师生共同探究的同时,以课件演示为辅助手段,让学生明确假设笼子里全是鸡,这时就比实际少10只脚,少了的脚其实是把兔子看成鸡时兔子少的脚,把一只兔子看成一只鸡少两只脚,所以10里面有几个2就有几只兔子。将学生的认知经验和思维过程转化为数学算式,突破了难点,形成了解决问题的策略,提高学生的思维水平和推理能力。接着又通过拓展练习让学生感觉到数学源于生活,把所学的数学知识应用到生活中去,用数学的眼光看待身边的事物,体会数学就在身边。

三、课堂教学中的一些不足

本节课是在试教的基础上基本实现了预定的教学目标,同时存在着很多不足

1、由于是借班上课,对学情了解不充分,上课时有点紧张,列表法忘了板书,后来又补上的,在平时的教学中应不断提高调控课堂的能力。

2、在讲授假设法时课件的展示有助学生形象直观的理解,让复杂问题简单化,但却不利于学生抽象思维培养,淡化了数学课的数学味,以后应有选择的使用课件,让课件为教学目标的达成服务。

四年级鸡兔同笼教学设计 篇7

教学内容:

义务教育课程标准教科书四年级下册数学广角----鸡兔同笼问题。(p103-105)教学目标:

1.了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

2.尝试用不同的方法解决“鸡兔同笼”问题,使学生体会假设法解题的一般性。3.在解决问题的过程中,培养学生的思维能力,并向学生渗透转化、函数等数学思想和方法。教学方法

1.谈话法:通过谈话,让学生回顾已学过的知识,又潜伏悬念,激发学生动机,起到温故知新的作用。

2.创设情境法:结合教学内容,设置问题情境,激发学生的求知欲望。3.讨论法:让学生在观察、讨论、合作、交流中探索问题,解决生活中的问题。学法:合作交流、自主探究。教学重点:

用假设法解决“鸡兔同笼”问题。教学难点

让学生认识、理解、运用假设法。多媒体课件、导学单 教学准备

教学过程:

一、揭示课题

谈话交流 引入:

1、师:同学们今天老师将和大家一起来学习一道我国古代非常有名的数学经典趣题。

多媒体出示:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”(PPT投影展示原题)

板书:鸡兔同笼 鸡兔同笼问题是我国古代三大趣题之一,记载于《孙子算经》一书中,距今已有1500多年,今天就让我们一起来研究古人留给大家的珍贵问题吧。2.会做“鸡兔同笼”这类题吗?会做的我们今天进一步来学习,不会的也没关系,通过这节课的学习,老师相信你们一定学会做的。同学们,有没有信心把这节课的内容学好呢?

二、展示情境,尝试探究

(一)出示情景,获取信息

1.既然“鸡兔同笼”问题能流传至今,就应该有它独特的思考方式和解题方法。在我们进行数学研究的时候,经常需要化繁为简,把数字改小些先从简单的问题入手吧。——渗透化繁为简思想。

2.(课件PPT出示)“笼子里有若干只鸡和兔,从上面数,有8个头;从下面数,有26条脚。鸡和兔各有几只?”

①师:看完这道题,从表面看此题你们能获取哪些信息?和生活常识联系在一起,你还能说出哪些信息?(指名汇报)

②我们一起来看看被关在同一个笼子里的鸡和兔给我们带来了什么信息?(预设)学生理解:⑴鸡和兔共8只。

⑵鸡和兔共有26条腿。

⑶鸡有2条腿。⑷兔有4条腿。(课件PPT出示)

(二)猜想验证,教学列表法

1.师:有了这些信息,我们先来猜猜,笼子可能会几只鸡,几只兔?(给予少许时间让学生猜测)能胡乱猜测吗?需要抓住哪个条件?

生1:(鸡和兔一共8只)

2.师:是不是抓住这个条件就一定马上能猜准确呢?好,老师这里有一张表格,请大家来填一填,看看谁能又快又准确的找出答案来,开始。

学生汇报(课件里展示正确答案)

3.师:你们和他的一样吗?这个方法挺好,能帮我们解决鸡兔同笼的问题,我们把这种方法叫做列表法(板书:列表法)

4.师:刚才老师发现很多同学刚才完成的都非常快,很了不起。那么,同学们,你们觉得用列表法解决“鸡兔同笼”问题怎么样?(让学生感受到列表法不是唯一解决“鸡兔同笼”的方法,切不是最简单的,引导学生寻求新的突破。)

(学生预设)学生会看的出,因为数字比较简单,所以列表法还可以用,但是数字变大时,列表法将太麻烦,浪费时间。

5.师:那我们就来尝试研究新的更简洁方法。同学们再来观察下自己刚才列的表格,看看这些数量之间是否存在着一些数学的规律,请将你的想法跟同组的同学相互交流下。开始。

(三)尝试假设法(难点),并利用画图法更形象的解释假设法。

1.学生在画图和讨论的过程中,教师要巡视学生,对于有困难的小组给予指导。2.学生汇报方法 学生预设:

①鸡的数量每减少1只,兔的数量就增加1只,腿的数量也跟着增加2条。②兔的数量每减少1只,鸡的数量就增加1只,腿的数量反而减少2条。③或者直接能说出全是鸡的时候是16条腿,题目要求26条腿,所以26-16=10(条),每只鸡比兔少2条腿(4-2=2),需要增加兔子补回来。所以10÷2=5(只)——兔,8-5=3(只)——鸡。(略)

3.肯定学生的想法,同时引导学生理解假设法。

(1)假设全是鸡

①师:同学们的想法非常好,我们一起继续来看这张表格,通过分析表格来将同学们的想法表述的更加清晰。

②师:我们先看表格中左起的第一列,8和0是什么意思?(就是有8只鸡和0只兔,也就是假设笼子里全是鸡,)那笼子里是不是全是鸡呢?(不是)那就是把什么当什么来算了,那把一只4条腿的兔当成一只2条腿的鸡来算会有什么结果呢?(就会少算两条腿)

③师:假设全是鸡一共是16条腿。实际有26条腿,这样笼子里就少了10条腿,为什么会少了10条腿?(主要让学生说出每孩子鸡比兔少2条腿。)你们能列出算式吗?(学生尝试列算式,教师巡视加以指导)

学生预设:把兔当了鸡在算。一只兔当成一只鸡算少两条腿,那把5只兔当成了鸡算就会少算10条腿,即10里面有5个2。用5只兔当成了鸡算,这个5就表示应该有5只兔,从而得到鸡有3只。

学生反馈:④学生和教师一起边说算式,教师边板书,结合课件以画图法进行演示(画图法让学生更直观的感受假设法的优越性)。

8×2=16(条)(如果把兔全当成鸡一共就有8×2=16条腿)

26-16=10(条)(把兔看成鸡来算,4条腿兔有当成两条腿的鸡算,每只兔就少了两条腿,10条腿是少算了兔的腿)

4-2=2(假设全是鸡,是把4条腿的兔有当成两条腿的鸡。所以4-2表示是一只兔当成一只鸡就要少算2条腿。)

10÷2=5(只)兔(那把多少只兔当成鸡算就会少10条腿呢?就看10里面有几个2就 是把几只兔当成了鸡来算,所以10÷2=5就是兔的只数。)

8-5=3(只)鸡(用鸡兔的总只数减去兔的只数就是鸡的只数,8-5=3只鸡)

(2)假设全是兔

1.方案①师:我们再回到表格中,看看右起第一列中的0和8是什么意思?(笼子里全是兔)那是不是全都是兔呢?(不是)也就是假设笼子里全是兔。这个时候把什么当什么算?那就是把里面的鸡也当成兔来计算了,那把一只2条腿的鸡当成一只4条腿的兔来算会有什么结果呢?(就会多算两条腿)(课件出示:把一只鸡当成一只兔算,就多了两条腿)请同学们可以像老师那样画一画,算一算。

方案②师:同学们,刚才我们假设全是鸡,那么假设全是兔,哪位同学能根据表格来解释下?(教师需要灵活给予引导)

2.师:哪位同学愿意把自己算式展示在黑板上? 学生板演:

8×4=32(条)(如果把鸡全看成兔一共就有8×4=32条腿)

32-26=6(条)(把鸡当成兔来算,两条腿的鸡当成4条腿兔算,每只鸡就多了两条腿,6条腿是多算了鸡的腿)

4-2=2(假设全是兔,是把两条腿的鸡当成有4条腿的兔。所以4-2表示是一只鸡当成一只兔多算了2条腿。)

6÷2=3(只)鸡(那要把多少只鸡当成兔来算就会多算6条腿呢?就看6里面有几个2就是把几只鸡当成了兔算,所以6÷2=3就是现在鸡的只数。)

8-3=5(只)兔

3.肯定学生的答案,用课件结合画图法再演示一次,最需要强调的是4-2=2的2是怎么来。

4.小结:刚才我们假设都是鸡或都是兔,所以把这种方法叫做假设法。这是解答鸡兔同笼问题的一种基本方法。善于雄辩,且拥有高智商的律师们经常用这样的方法,看来同学们都非常聪明。(板书:假设法)

(四)小结:请同学们回忆一下,在解决鸡兔同笼问题时,用到了哪些方法?(列表法,画图法,假设法)

三.练习

1、现在我们就用刚才学到的这些方法来解决《孙子算经》中原题,你会做吗?用你喜欢的一种方法做。

课件出示《孙子算经》中原题学生解答并集体讲评 四.延伸、应用

1.课件出示“做一做”第一题

鸡兔同笼问题传到日本时就变成了“龟鹤问题”,你认为“龟鹤问题”与“鸡兔同笼”有什么相似之处?课件出示(龟相当于兔,鹤相当于鸡)展示学生作业,并抽生说说思路。

2.看来鸡兔问题这类问题我们不只局限算鸡和兔的只数问题上,只要能用“鸡兔同笼”问题来解答的问题都可以统一叫做“鸡兔同笼”问题。下面我们就用刚才学到的“鸡兔同笼”方法,来帮我们解决生活中遇到的一些实际问题。

3、(机动)课件出示补充习题。问这道题与“鸡兔同笼”问题有相似的地方吗?有哪些地方相似?(三轮车相当于“兔”,自行车相当于“鸡”)学生独立完成,集体讲评。

五.全课总结:

本节课你有什么收获?你觉得鸡兔同笼问题,还可以叫什么问题? 六.布置作业

P116练习二十六第1、2题。板书设计

鸡兔同笼

列表法 画图法

假设法:

1、假设全是鸡

2、假设全是兔

鸡兔同笼练习题 篇8

鸡兔同笼类练习题一

1.有鸡兔共20只,脚44只,鸡兔各几只?

2、龟鹤共有100个头,350只脚.龟、鹤各多少?

3、鸡兔共笼,兔比鸡多4只,共有脚76只,鸡、兔各多少只?

4、鸡兔共200只,鸡的脚比兔的脚少56只,则鸡有几只,兔有几只?

5、鸡、兔共笼,鸡比兔多26只,足数共274只,问鸡、兔各几只?

6、鹤龟同池,鹤比龟多12只,鹤龟足共72只,求鹤龟各有多少只?

鸡兔同笼类练习题二

1、有钢笔和铅笔共27盒,共计300支.钢笔每盒10支,铅笔每盒12支,则钢笔有多少盒?铅笔有多少盒?

2、大油瓶一瓶装4千克,小油瓶2瓶装1千克.现有100千克油装了共60个瓶子.问大、小油瓶各多少个?

3、100个馒头100个和尚吃,大和尚每人吃4个,小和尚4人吃一个,则大和尚有多少个?小和尚有多少个?

4、100个馒头100个和尚吃,大和尚每人吃3个,小和尚3人吃一个,则大和尚有多少个?小和尚有多少个?

5、全班46人去划船,共乘12只船,其中大船每只坐5人,小船每只坐3人,求大船和小船各有多少只?

6、停车场上停了35辆小轿车和两轮摩托车,地面上数一上共有10个轮子,请问小轿车和摩托车各有多少辆?

7、一次植树活动,规定大树每人种2棵,小树每人种4棵,全班50人植树140棵,问种这两种树的各有多少人?

8、幼儿园买来20张小桌和30张小凳共用去1860元,已知每张小桌比小凳贵8元,问小桌、小凳的价格各多少?

9、一个大人一次吃两个苹果,两个小孩一次吃一个苹果,现在有大人和小孩供99人,共吃了99个苹果,大人小孩各多少人?

10、现有大小油桶50个,每个大桶可装油4千克,每个小桶可装油2千克,大桶比小桶共多装油20千克,问大小桶各多少个?

鸡兔同笼类练习题三

1.学校有象棋、跳棋共26副,恰好可供120个学生同时进行活动.象棋2人下一副棋,跳棋6人下一副.象棋和跳棋各有几副?

2.王老师带48名同学去公园划船,共租了10条船恰好坐满。每条大船坐6人,每条小船坐4人。问大船、小船各租了几条?

3.某校有100名学生参加数学竞赛,平均分是63分,其中男生平均分是60分,女生平均分是70分,男同学比女同学多多少人?

4.体育老师买了运动服上衣和裤子共21件,共用了439元,其中上衣每件24元,裤子每件19元,体育老师买了运动服上衣和裤子各多少件?

5.自行车越野赛全程 220千米,全程被分为20个路段,其中一部分路段长14千米,其余的长9千米.问:长9千米的路段有多少个?

6.六年二班全体同学,植树节那天共栽树180棵.平均每个男生栽5棵、每个女生栽3棵;又知女生比男生多4人,该班男生和女生各多少人?

7.一辆汽车参加车赛,9天共行了5000公里。已知它晴天每天行688公里,雨天平均每天行390公里。在比赛期间,有几个晴天?有几个雨天?

8.刘老师带了41名同学去北海公园划船,共租了10条船.每条大船坐6人,每条小船坐4人,问大船、小船各租几条?

9.肖老师带51名学生去公园里划船。他们一共租了44条船,其中有大船和小船,每条大船坐6人,小船4人。每条都坐满了人。他们租的大船有几条,小船有几条?

10.班主任张老师带五年级(2)班50名同学栽树,张老师一人栽5棵,男生一人栽3棵,女生一人栽2棵,总共栽树120棵,问几名男生,几名女生?

11.张老师带六年级40名同学去栽树,张老师一人栽5棵,男生每人栽3棵,女生每人栽2棵,共栽了100棵,问有几名男生,几名女生?

12.孙老师带领99名同学种100棵树,他先种了一棵示范后,安排男同学一人种两棵,女生每两人种一棵。植树的男生有多少人?而女生有多少人?

13.在一个停车场内,汽车、摩托车共停了48辆,其中每辆汽车有4个轮子,每辆摩托车有3个轮子,这些车共有172个轮子,停车场内有汽车、摩托车各多少辆?

14.在一个停车场上,停了汽车和摩托车一共32辆。其中汽车有4个轮子,摩托车有3个轮子,这些车一共有108个轮子。求汽车和摩托车各有多少辆?

鸡兔同笼类练习题四

1.有大小两种塑料桶共60只。每个大桶装水5公斤,每个小桶只能装水2公斤。又知大桶一共比小桶多装26公斤。则大桶有多少只,小桶有多少只?

2、买2角与5角的邮票共24张,总值6元,两种邮票各买了几张?

4、12张乒乓球台上共有34人在打球,问:正在进行单打和双打的台子各有几张?

5、有20张5元和10元的人民币,一共是175元,5元和10的人民币各有多少张?

6、小明的储蓄罐里有1角和5角的硬币共27枚,价值5.1元,1角和5角的硬币各有多少元?

7、小强爱好集邮,他用1元钱买了4分和8分的两种邮票,共20张,那么他买了4分邮票多少张?

8、王老师用40元钱买来20枚邮票,全是1元和5元的。求这两种邮票分别买了多少枚?

9、小红的储钱罐里有面值2元和5元的人民币共65张,总钱数为205元,两种面值的人民币各多少张?

10、张的存钱盒里有2角,5角和1元人民币20张,共12元,算一算三种面值的人民币各有多少张?

鸡兔同笼类练习题五

1.某次数学测验共20题,做对一题得5分,做错一题倒扣1分,不做得0分.小华得了76分,问他做对几题?

2.某学校举行数学京赛,每做对一题得9分,做错一题倒扣3分,共有12题,王刚得了84分,王刚做错了几题?

3.某小学举行英语京赛,每做对一题得10分,做错一题倒扣4分,共有15题,王刚得了108分,王刚做错了几题?

4.某次数学京赛共20道题,每做对一题得5分,每做错或不做一题倒扣1分,刘亮得了64分,刘亮做错了几题?

5.益智乐园举行数学竞赛,共15道题,每答对一题得8分,每做错一题倒扣4分,小凯共得72分,请问他做对了几道题?

7.朝阳小学六年级举行数学竞赛,共20道试题.做对一题得5分,没有做一题或做错一题倒扣3分.刘刚得了60分,则他做对了多少题?

8.某次数学抢答比赛共20题,做对一题得5分,做错一题倒扣2分,不做倒扣1分.小华得了74分,问他做对几题?答错几题?没答的有几题?

9.学校举行数学竞赛,共有20道选择题。评分标准是:每做对一题得5分,做错一题扣2分,没做为0分。小红得了73分,她有几题没有做呢?

10.某校数学竞赛,共有20道填空题。评分标准是:每做对1题得5分,做错1题倒扣3分,没做的一题得0分,小英的得分是69分,那么小英有几题没做?

11.小毛参加数学竞赛,共做20道题,得64分,已知做对一道得5分,不做得0分,错一题扣2分,又知道他做错的题和没做的一样多.问小毛做对几道题?

鸡兔同笼类练习题六

1.运输花瓶100个,规定每个运费为4元若打碎1个花瓶,则要赔偿 10元,这列后共得运费344元,有几个花瓶打碎了?

2.运输衬衫40箱,规定每箱运费10元,若损失一箱,不但不给运费,并要赔偿100元,运后运费为180元,损失了几箱?

3.搬运50只玻璃瓶,规定安全运到一只可得搬运费3元,但打碎一只,不仅不给搬运费,还要赔5元,如果运完后共得运费110元,那么,搬运中打碎了多少只?

4.松鼠妈妈采松子,晴天每天可采20个,雨天每天可采12个,它一连几天采了个松子,平均每天采14个.问这几天当中有几天有雨?

5.松鼠妈妈采松子,晴天每天采20个,雨天每天可采12个,它一连采了112个,平均每天采14个,这几天中有多少天是雨天。

6.松鼠采松果,晴天每天采20个,雨天只能采10个,它一连采了120个,平均每天采12个。问这几天中有几个雨天?

7.白兔妈妈采蘑菇,晴天每天可采24个,雨天每天可采16个。它一连几天采了168个蘑菇,平均每天采21个。求晴天时一共采了多少个蘑菇?

8.兔妈妈上山采蘑菇,晴天,每天能採30个,雨天,每天能採12个它从4月10号开始,到4月29号,中间没休息,一共採了510个蘑菇。那么,晴天是多少天?雨天有多少天? 鸡兔同笼类练习题七

1.螃蟹有10条腿,螳螂有6条腿和1对翅膀,蜻蜓有6条腿和2对翅膀。现在这三种动物37只,共有250条腿和52对翅膀。每种动物各有多少只?

2.有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿,蜻蜓6条腿,2对翅膀;蝉6条腿,1对翅膀),三种动物各几只?

3.蜘蛛有8条腿,蝴蝶有6条腿和2对翅膀,蝉有6条腿和一对翅膀,现有这三种动物共21只,共140条腿和 23对翅膀,问蜘蛛、蝴蝶、蝉各有几只?

4.蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀。现在这三种小虫16只,共有110条腿和14对翅膀。问,每种小鸟各几只?

5.蜘蛛有8条腿,蝴蝶有6条腿和2对翅膀,蝉有6条腿和一对翅膀,现有这三种动物共21只,共140条腿和 23对翅膀,问蜘蛛、蝴蝶、蝉各有几只?

《鸡兔同笼》教案 篇9

1、通过学生对一些日常生活中的现象的观察与思考,从中发现一些特殊的规律。

2、通过列表举例、作图分析等方法,解决鸡与兔的数量问题。

[教学重、难点]

通过列表举例、作图分析等方法,解决鸡与兔的数量问题。

[教学过程]

一、呈现鸡兔同笼问题。组织学生探索解决问题的方法。

1、小组活动

2、交流方法

3、

二、做一做

独立完成第1—3题,并交流解决的方法。

第4题的答案有多种,启发学生找出不同的答案。

讨论第4题与前3题所给条件的不同,从而让学生知道哪些题的答案是唯一的,哪些题是有多种答案的。

[板书设计]

鸡兔同笼教案 篇10

学生1:列表法能很清晰地解决这个问题。

学生2:因为数字比较简单,所以列表法还可以用,但是数字变大时,列表法就会比较麻烦,会浪费很多时间。

教师:说得非常好,那我们就来尝试研究一下更简洁的方法吧。同学们再来观察自己刚才列的表格,看看这些数量之间是否存在着一些数学规律,请将你的想法跟同组的同学相互交流一下。

学生小组交流汇报。

预设:

学生1:鸡的数量每减少1只,兔的数量就增加1只,脚的数量也跟着增加2只。

学生2:兔的数量每减少1只,鸡的数量就增加1只,脚的数量反而减少2只。

【设计意图】列表法虽然烦琐,但这是一种重要的解决问题的策略和方法,是学习假设法的基础,因此也是本课的重要教学内容之一。让学生以填表的方式初步体验鸡兔同笼情况下随着鸡或兔只数的调整,脚的总数量的变化规律,为下面的学习做好铺垫。

4.数形结合理解假设法。

教师:同学们的想法非常好,我们一起继续来看这张表格,通过分析表格来将同学们的想法表述得更加清晰。

(1)假设全是鸡。

教师:我们先看表格中左起的第一列,8和0是什么意思?

8×4=32(只)。(如果把鸡全看成兔,一共就有8×4=32只脚。)

32-26=6(只)。(把鸡当成兔来算,2只脚的鸡当成4只脚的兔算,每只鸡就多了2只脚,6只脚是多算了鸡的脚数。)

4-2=2(只)。(假设全是兔,就是把2只脚的鸡当成4只脚的兔。所以4-2表示一只鸡当成一只兔,多算了2只脚。)

6÷2=3(只)鸡。(那要把多少只鸡当成兔来算,就会多算6只脚呢?就看6里面有几个2,也就是把几只鸡当成了兔来算,所以6÷2=3就是现在鸡的只数了。)

8-3=5(只)兔。(用鸡兔的总只数减去鸡的只数就是兔的只数,8-3=5只兔。)

(3)提出假设法概念。

刚才我们通过假设都是鸡或都是兔来解决例1的,所以把这种方法叫做假设法。这是解决“鸡兔同笼”问题的一种基本方法,也是算术方法中较为普遍的一般方法。

(板书:假设法)

【设计意图】此环节是本课的重点,也是本课的难点,假设法的算理对于大部分学生来说,都是比较难以理解和掌握的。采用画图法,数形结合地引导学生根据图较为完整、准确地说明算理,学会思考,学会解释,可以让学生更加直观地感受假设法的优越性。

(三)知识运用

学生独立完成古代趣题。

【设计意图】运用已学的技能去解决古代“鸡兔同笼”问题,创设课堂教学文化氛围,提高学生探究数学的热情。

(四)全课小结

上一篇:后勤保障论文下一篇:监狱警示教育参观活动心得体会十三