多边形内角和1的教案(精选12篇)
第1课时
教学目标 知识与技能:
表述多边形的有关概念(内角、外角、对角线、凸多边形、凹多边形); 情感态度价值观:
1、通过探索过程进一步体会知识点之间的联系;
2、通过本节的学习进一步体会数学与现实生活的紧密联系. 教学重难点
表述多边形的有关概念(内角、外角、对角线、凸多边形、凹多边形). 教学过程
(一)引入
你能从图1中找出几个由一些线段围成的图形吗?
图1
(二)知识点
我们学过三角形,类似地,在平面内,由一些线段首尾顺次相接组成的图形叫做多边形(polygon).
多边形按组成它的线段的条数分成三角形、四边形、五边形……三角形是最简单的多边形.如果一个多边形由n条线段组成,那么这个多边形就叫做n边形.如图2,螺母底面的边缘可以设计为六边形,也可以设计为八边形.
图2 多边形相邻两边组成的角叫做它的内角.图3中的∠A、∠B、∠C、∠D、∠E是五边形ABCDE的5个内角.多边形的边与它的邻边的延长线组成的角叫做多边形的外角.图4中的∠1是五边形ABCDE的一个外角.
图3 图4 图5 连接多边形不相邻的两个顶点的线段,叫做多边形的对角线(diagonal).图5中,AC、AD是五边形ABCDE的两条对角线.
特别提醒:n边形(n≥3)从一个顶点可引出(n-3)条对角线,把n边形分割成(n-2)个三角形,共有对角线n(n3)条. 2例如:十边形有________条对角线.在这里n=10,就可套用对角线条数公式n(n3)10(103)35(条). 22
图6 如图6(1),画出四边形ABCD的任何一条边(例如CD)所在直线,整个四边形都在这条直线的同一侧,这样的四边形叫做凸四边形.而图6(2)中的四边形ABCD就不是凸四边形,因为画出边CD(或BC)所在直线,整个四边形不都在这条直线的同一侧.类似地,画出多边形的任何一条边所在直线,如果整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形.本节只讨论凸多边形.
我们知道,正方形的各个角都相等,各条边都相等.像正方形那样,各个角都相等,各条边都相等的多边形叫做正多边形.图7是正多边形的一些例子.
图7 特别提醒:(1)正多边形必须两个条件同时具备:①各内角都相等;②各边都相等.例如: 矩形各个内角都相等,它就不是正四边形.再如:菱形各边都相等,它却不是正四边形.
第2课时
教学目标 知识与技能:
1、探索并说出多边形的内角和与外角和公式;
2、进一步发展说理能力和简单的推理能力. 过程与方法:
经历探索多边形内角和与外角和公式的过程,实际测量,推理. 情感态度价值观:
1、通过探索过程进一步体会知识点之间的联系;
2、通过本节的学习进一步体会数学与现实生活的紧密联系. 教学重难点
重点是多边形的内角和与外角和定理.
难点是学会善于运用三角形的有关知识来研究多边形的问题,能够灵活运用多边形内角和与外角和解决相关问题. 教学过程
(一)思考
三角形的内角和等于180°.正方形、长方形的内角和都等于360°,其他四边形的内角和等于多少?
(二)探究
任意画一个四边形,量出它的4个内角,计算它们的和.
再画几个四边形,量一量,算一算.你能得出什么结论?能否利用三角形内角和等于180°得出这个结论?
如图8,画出任意一个四边形的一条对角线,都能将这个四边形分为两个三角形.这样,任意一个四边形的内角和,都等于两个三角形的内角和,即360°.
图8 从上面的问题,你能想出五边形和六边形的内角和各是多少吗?观察图9,请填空: 图9 从五边形的一个顶点出发,可以引_______条对角线,它们将五边形分为_______个三角形,五边形的内角和等于180°×_________.
从六边形的一个顶点出发,可以引______条对角线,它们将六边形分为________个三角形,六边形的内角和等于180°×__________.
通过以上问题,你能发现多边形的内角和与边数的关系吗? 一般地,怎样求n边形的内角和呢?请填空:
从n边形的一个顶点出发,可以引______条对角线,它们将n边形分为________个三角形,n边形的内角和等于180°×______.
总结:过n边形的一个顶点可以做(n-3)条对角线,将多边形分成(n-2)个三角形,每个三角形内角和180°.
所以n边形内角和(n-2)×180°.
把一个多边形分成几个三角形,还有其他分法吗?由新的分法,能得出多边形内角和公式吗?
方法2:如图:10过n边形内任意一点与n边形各顶点连接,可得n个三角形,其内角和n×180°.再减去以O为顶点的周角.
即得n边形内角和n·180°-360°.
图10 得出了多边形内角和公式:n边形内角和等于(n-2)·180°.
(三)例题
例1:如果一个四边形的一组对角互补,那么另一组对角有什么关系?
图11 解:如图11,四边形ABCD中,∠A+∠C=180°.
因为∠A+∠B+∠C+∠D=(4-2)×180°=360°,所以∠B+∠D=360°-(∠A+∠C)=360°-180°=180°.
这就是说,如果四边形的一组对角互补,那么另一组对角也互补.
例2:如图12,在六边形的每个顶点处各取一个外角,这些外角的和叫做六边形的外角和.六边形的外角和等于多少?
图12 分析:考虑以下问题:
(1)任何一个外角同与它相邻的内角有什么关系?
(2)六边形的6个外角加上与它们相邻的内角,所得总和是多少?(3)上述总和与六边形的内角和、外角和有什么关系? 联系这些问题,考虑外角和的求法.
解:六边形的任何一个外角加上与它相邻的内角,都等于180°.6个外角连同它们各自相邻的内角,共有12个角.这些角的总和等于6×180°.
这个总和就是六边形的外角和加上内角和.所以外角和等于总和减去内角和,即外角和等于6×180°-(6-2)×180°=2×180°=360°.
(四)探究
如果将例2中六边形换为n边形(n的值是不小于3的任意整数),可以得到同样结果吗? 思路:(用计算的方法)
设n边形的每一个内角为∠1,∠2,∠3,……,∠n,其相邻的外角分别为180°-∠1,180°-∠2,180°-∠3,……180°-∠n.外角和为(180°-∠1)+(180°-∠2)+……+(180°-∠n)=n×180°-(∠1+∠2+∠3+……+∠n)=n×180°-(n-2)×180°=360°
注意:以上各推导方法体现将多边形问题转化为三角形问题来解决的基本思想. 由上面的探究可以得到: 多边形的外角和等于360°.
你也可以像以下这样理解为什么多边形的外角和等于360°.
如图13,从多边形的一个顶点A出发,沿多边形的各边走过各顶点,再回到点A,然后转向出发时的方向.在行程中所转的各个角的和,就是多边形的外角和.由于走了一周,所转的各个角的和等于一个周角,所以多边形的外角和等于360°.
第二环节:课堂师生交流对话预设方案
1. 精选知识点:多边形内角和公式(n-2)×180°
2. 情境创设点
第一步:长方形内角和是多少?
第二步:正方形内角和是多少?
第三步:一般四边形内角和是多少?
3. 新知切入点
师:大家知道六边形的内角和吗?
学生回答不知道.
师:你们随便说一个多边形,老师就可以说出它的内角和是多少度.
学生质疑.
师:通过这节课的学习,你也可以做到.
4. 合作探究点
师:这节课我们共分成四大组进行合作交流.
我们先来玩个意念飞镖的游戏,请每组派一名代表.(通过每组选派的选手)得出点与四边形的位置关系:顶点、边上、内部、外部.
5. 对话精彩点
请每组学生利用自己组飞镖的位置探究四边形内角和的规律.
6. 点拨设计点
方法一:教材探究法
连接任意一条对角线,把四边形分成两个三角形.
方法二:对角线法
连接两条对角线,将四边形分成四个三角形.
方法三:一边取点法
在四边形的任意一边上取一点,连接各顶点,分割成三角形.
方法四:内部取点法
在四边形内部任意取一点,连接各顶点,组成三角形.
方法五:外部取点法
在四边形的外部任意取一点,连接各顶点,组成三角形.
7. 信息优化点
运用几何画板展示取点的动态过程,使学生形成深刻的印象.
8. 知识整合点
第三环节:新知检测
“1·3·3·4”课堂教学模式课后训练题(略).
教学反思:
结合《多边形内角和》这一课和本班的学情,我以我校多年来开展的“1·3·3·4教学模式”为载体进行了本节课的设计.所谓“1·3·3·4教学模式”中的“1”,是以人为本的教育理念,与新课程标准中“面向全体学生,让人人都能获得良好的数学教育”完全吻合.第一个“3”是教学流程的3个步骤,即开篇训练———师生对话———新知检测.第二个“3”是指教学对象的三个层面,即学习有困难的学生、对知识可接受的学生、学习有余力的学生;教学内容的三个层次,即基础性、中等性、综合性;习题配备的三个覆盖,即覆盖上节知识,上节所在单元的知识,本单元之外的知识;知识验收的三个步骤,即检测、反馈、矫正.从而体现面向全体学生,因材施教的基本理念“.4”为四个保证,即知识无盲点,题型无盲区,步骤无盲分,课堂无盲生.
在本节课的开篇训练中,我设计了8道题,其中3道针对学习有困难的学生,4道针对对知识可接受的学生,还有一道针对学有余力的学生.不仅覆盖本节课的知识,还覆盖了之前学习的平行线、三角形内角和等12个知识点,注重了知识的滚动式练习.对于扎实基础,提升能力有一定的作用.授课后发现不足:题量有些大,应缩减.
在师生对话环节的新知切入点中,我设计了学生任意说多边形的边数,我回答多边形内角和的环节,激发了学生的求知欲,使学生带着好奇心听课,体验获得成功的快乐,取得了很好的效果.
在合作探究点中,我设计了飞镖游戏.学生思想从感官认知转变为分类讨论,实现了学生为主体,教师为主导的课堂角色.学生的讨论是有的放矢的,因此能实现放得开并收得拢的目地.学生既进行了深度思考,又能通过思考总结出相应公式,思路清晰,有效率.
在探究的过程中出现了一些问题.比如:要避免某些小组成员游离于合作之外,教师还应精心策划讨论如何有效地开展,时间多长,采取何种讨论方法,在讨论过程中该担当何种角色等;在小组交流过程中,学生的发言过分注重探索的结果,而忽视了探索过程的展示,有些总结性的语言限制了学生的思维,不能最大限度地发挥学生自主探究的能力等;我在教学过程中对学生的评价较为单一,肯定不够及时,表扬不够热情等.
在知识整合点中,我设计了知识结构图.学生通过一节课的学习不仅要掌握本节的知识点,还应寻找知识的内在联系,形成知识链,结成知识网,并体会学习过程中的数学思想,如分类思想,转化思想,类比思想,从一般到特殊思想,整合思想等的应用.知识结构图可以有效地辅助学生完成知识的整合.
相邻两条边的公共端点叫做这个三角形的顶点;(A、B、C)
相邻两条边所夹的角叫做这个三角形的内角,又叫做这个三角形的角(∠A、∠B、∠C)
三角形的内角的邻补角叫做这个三角形的外角
2.三角形的表示为△ABC
3.三角形的三条重要线段:高、中线、内角平分线(三条高所在的直线都交于一点,这个点叫
做三角形的垂心;三条中线交于一点,这个点叫做三角形的重心;
三条内角平分线交于一点,这个点叫做三角形的内心)
4.三角形内角和定理以及相关的结论
(1)三角形的内角和为180°
(2)直角三角形的两个锐角互余
(3)三角形的外角和为360°
(4)三角形的一个外角等于与它不相邻的两个内角的和
(5)三角形的一个外角大于与它不相邻的任何一个内角
5.三角形的三边关系定理
三角形的任意两边之和都大于第三条边;任意两边之差都小于第三条边
6.三角形具有稳定性
7.多边形:由在同一平面内,不在同一直线上的若干条线段首尾顺次连接所围成的封闭图形叫
做多边形
这些线段叫做这个多边形的边;
相邻两条边的公共端点叫做这个多边形的顶点;
相邻两条边所夹的角叫做这个多边形的内角,又叫做这个多边形的角
多边形的内角的邻补角叫做这个多边形的外角
8.对角线:连结多边形不相邻的两个顶点的线段叫做多边形的对角线
由一个顶点出发的对角线有(n-3)条;(n表示边数)
条对角线(n表示边数)
9.多边形的内角和及外角和
(1)多边形的内角和为(n-2).180°(n表示边数)
(2)多边形的外角和为360°
【阶段练习】
一、回答下列各问题
1.什么是三角形?它有哪些元素?通常用什么符号来表示它及三个角所对的边?
2.为什么屋架、桥梁及电杆的支架多采用三角形的形状?
3.如果△ABC的三条边长分别为(12、13、14)及(10、20、30),这样的三角形能成立吗?
为什么?
4.设△ABC的边长分别为a、b、c,那么这三条边的边长须具有什么条件,才能将△ABC画
出来
5.△ABC中有几条角平分线?试画图说明
6.什么是三角形的高?一个三角形有几条高?三角形的高的位置是否一定在形内?为什么?
试画图说明
7.三角形的一条中线把这个三角形分成两部分,这两个部分的面积有什么关系?为什么?
8.三角形的三个内角分别为α、β、γ,则α+β+γ的值是多少?
9.三角形的一个外角与它不相邻的两个内角之间有什么关系?
二、填空题
1.三角形的外角和是内角和的_____________倍
2.四边形的外角和是内角和的____________倍
3.六边形的外角和是内角和的_______________倍
4.一个多边形的内角和是900°,则这个多边形是________边形
三、解答题
-05-06
教学任务分析
教学目标
知识技能
通过探究,归纳出多边形的内角和
数学思考
1、 通过测量、类比、推理等数学活动,探索多边形的内角和的公式,感受数学思考过程的条理性,发展推理能力和语言表达能力。
2、 通过把多边形转化成三角形体会转化思想在几何中的应用,同时
时让学生体会从特殊到一般的认识问题的方法。
3、 通过探索多边形内角和公式,让学生逐步从实验几何过度到
论证几何
解决问题
通过探索多边形内角和公式,尝试从不同角度寻求解决问题的方法并能有效的解决问题。
情感态度
通过对生活中数学问题的探究,进一步提高学数学、用数学的意识,在自主探究、合作交流的过程中,体会数学的重要作用,感受数学活动的重要意义和合作成功的喜悦,提高学生学习的热情。
重点
探索多边形内角和的公式的探究过程。
难点
在探索多边形的内角和时,如何把多边形转化成三角形。
知识联系
多边形的对角线和三角形的内角和为本节课的知识做了铺垫,本节课的内容为多边形的外角和做知识上的准备。
知识背景
对多边形在生活中有所认识
学习兴趣
通过探究过程更能激发学生学习的兴趣。
教学工具
三角板和几何画板。
教学流程设计
活动流程图
活动内容和目的
有幸与实验小学赵丽老师同时选中《多边形的内角和》这一课,但我们从不同角度不同方式对它进行了解读。20世纪90年代,因为农村小学学生人数的急剧减少,我们学校在课堂上尝试性的进行了分层异步教学,在同一节课中,根据学生认知水平差异,把学生分成A,B两组,在组内又依托知识水平相近原则,把3,4名学生分为一个小组,通常采用合——分——合的模式进行教学,即,当A组同学教学时,B组自学,反之亦然,经过与普通班的对比研究,发现复式班学生在学习效果上有着明显的成效。基于这一基础,我采用分层的模式来进行多边形的内角和的教学,这一尝试,让我对自己的.数学教学有了如下反思:
1,以经验为基础,让学生得到不同的发展。
基于学生的认知经验及活动经验,对学生进行分组,以期达到不同的学生在数学上得到不同程度的发展的目标,学习能力较强的同学要能吃饱,学习能力较弱的同学要在原有基础上有所进步。在实际教学中,对于A组和B组的学生,除了在教学形式上有所区别外,A组教学为主,B组自学为主,我在教学时间的分配上对AB组并没有显着区分,在以后的尝试探索中,我应对A组加以更细致的教学指导,对B组更大胆的放手,让学生上台说,做,教,减少B组的教学时间。
2,勇于放手,培养学生自学的能力。
在一开始设计B组的学习单时,即使B组同学学习能力较强,但出于对学生的担忧,担心学生想不到用分一分的方法,在学习单上,我引导学生,多边形能够分成几个三角形,内角和怎么算。而周校长建议我,是否能给学生更多的空间,把“小问题”变为“大问题”,直接提问学生,多边形的内角和是多少,让学生去尝试探索各种方法,而不仅局限于转化为三角形内角和的方法。在后来的实际教学中,采用了“大问题”的提问方式,我惊喜的发现,学生的探究自学能力比我预想的出色许多。
3,细节入手,培养学生良好习惯。
小学数学良好习惯的培养不仅对学生自身的数学学习有所裨益,对课堂教效果的影响更是尤为明显。在分层教学的模式中,为避免AB组互相间的干扰,必须在课堂上对每组学生提出明确的要求,课前乃至平时都要对学生的学习习惯进行培养,这样才能让我们的数学老师对课堂全局的把握更加深刻,才能够让数学课堂井然有序,数学教学效果得到最大程度的保证。
一、联系实际, 引入新课
师: (教师出示课件, 屏幕显示如图1) 图中为一环形跑道, 大家进行过这样的跑操训练吗?有一位同学非常爱锻炼身体, 他每天坚持跑步训练, 他沿跑道的A点开始按如图1方向的线路跑完一周回到A点 (图中的6个点是指路口交叉处) , 他跑步的路线有什么特征?
提出问题: (1) 你知道这几条路线所围成的环形跑道是什么图形吗?
(2) 该同学从上一条路线转到下一条路线时, 身体转过一个角度, 当跑完一周回到A点时, 身体转过的角度之和为多少呢?即这个图中6个内角之和是多少呢?即图中:∠A+∠B+∠C+∠D+∠E+∠F=?
同学们能解决这些问题吗?这就是我们本节课要探究学习的内容.
二、交流讨论, 探究新课
1. 探究新知准备 (知识、用具、心理准备)
师:同学们, 你还记得下例概念和结论吗?请复习并填空:
(1) 三角形的内角和为____;
(2) 多边形概念是_____;
(3) 多边形的对角线概念是_____ (举例回答) .
2. 讨论交流
同学们回顾一下四边形的内角和为多少?我们是怎样得到的?如图2, 是不是我们任意连接四边形的一条对角线AC, 将四边形分成两个三角形, 运用三角形的内角和为180°来得到四边形的内角和为360°.
那么, 我们现在来探究一下五边形和六边形的内角和又是多少呢?请观察图3并填空:
如图3, 从五边形ABCDE的任一顶点出发, 可以引 () 条对角线, 它将五边形ABCDE分为 () 个三角形.所以五边形的内角和:∠1+∠2+∠3+∠4+以五边形的内角和:∠1+∠2+∠3+∠4+∠B+∠5+∠6+∠7+∠E= () .
如图4, 从六边形ABCDEF的任一顶点出发, 可以引 () 条对角线, 它可将该六边形ABCDEF分成 () 个三角形, 所以六边形ABCDEF的内角和等于 () .
请思考:同学们, 你能从上面探究四边形、五边形、六边形的内角和的过程中发现什么规律吗?
提示:进一步观察在探究中将多边形分成的三角形的个数与相应多边形的边数有什么关系?又分别与相应的多边形的内角和:360°, 540°, 720°有什么关系?
再思考:你又能按探究五边形、六边形的内角和的方法得到如图5所示的n边形 (n>6) 对角线条数、分割三角形的个数的规律吗? (小组讨论.)
从n边形一个顶点出发:可以引 () 条对角线, 它可将n边形分为 () 个三角形, 所以n边形内角和等于 () .
师生合作讨论, 交流后归纳总结:
(1) 三角形中: (3-2) 180°=180°;
四边形中: (4-2) 180°=360°;
五边形中: (5-2) 180°=540°;
六边形中: (6-2) 180°=720°.
(2) n边形从一顶点出发可引对角线 (n-3) 条, n边形内角和为 (n-2) ×180° (n≥3) .
(3) 在多边形的有关计算与证明中, 用对角线把多边形变为三角形来研究是十分重要的方法, 其本质是把多边形的有关计算问题转化为若干三角形的问题来计算.
三、课堂训练, 巩固新知
(师生当堂合作完成下列题型.)
(1) 八边形的内角和为 () .
分析:可直接运用多边形内角和公式知 (8-2) ×180°=1 080°.
(直接运用结论.)
(2) 如果多边形的内角和是1 440°, 则这个多边形是 () 边形.
分析1 (直接列算式) 计算:1 440÷180+2=10.
分析2 (运用方程的思想) 设这多边形边数为n, 则 (n-2) ×180°=1 440°, 解得n=10.
(逆用结论, 逆向思维.)
(3) 从多边形一个顶点出发可以引6条对角线, 则这个多边形内角和为 () .
(A) 1 260° (B) 900°
(C) 1 080° (D) 1 440°
答案:A.
以上为多边形内角和教学的主体结构, 在这节探究式教学中, 笔者有以下体会.
1. 教法符合新课改理念和学生的认识规律
在第一部分的引入环节, 克服了传统教学的组、复、新、巩、布的模式, 以学生生活中感兴趣的环形跑道图形展开新课引入教学, 一改惯用的复习旧知识引出新课的方法, 为学生探究活动创设情境, 形成探究氛围.
2. 教学过程以学生为主体, 以探索为主线形成知识链
在第二部分的新课学习中, 突出学生为主体, 教师为引导, 体现学生是知识的探索者, 强调引导学生进行小组讨论, 鼓励学生自己分析、思考、判断、归纳、探索总结和验证数学规律, 得出公式, 这样有利于培养学生把握数学知识间的内在联系, 全面灵活地思考问题的能力.
3. 教学中仍有欠缺, 有待完善改进
在创新的课堂教学中, 实现自主、合作、探究的学习方式, 要充分激发学生的兴趣, 把握好学生的参与度, 我觉得具体要体现“两化”: (1) 问题化.首先要引导学生提出问题, 并能对解决问题产生强烈的愿望, 从而在教师的引导下, 通过分析、讨论, 抓住问题的实质, 总结规律, 解决问题. (2) 探究化.要克服传统教学方式的教师告知结论学生被动接受, 而应让学生各抒己见, 让学生在讨论、探究的氛围中发现问题, 总结规律.
探索、讨论、启发、讲授
教学手段
利用学生剪纸、投影仪进行教学
教学过程:
一、引入:
1、出示多媒体投影片或出示事物图:正方形石英钟、五边形(广场图)、六变形螺母、八边形。
2、给出多边形概念:多边形的顶点、边、内角和、对角线及其有关概念。
二、多边形内角和公式:
1、三角形的内角和是多少度?任意四边形的内角和是多少度?怎样得到的`?那么五边形的内角和怎样求呢?要求学生剪纸或画图找出五边形可剪成多少个三角形求内角和?六边形可怎样剪成三角形?n边形呢?
2、学生讨论:在剪纸及画图活动中充分的探索、交流、体会,先独立思考,然后小组讨论、交流,发表不同见解。探索五边形内角和的不同方法:(学生可能得出如图一、图二、图三中的不同方法)
(1)量出每个内角度数然后相加为540°;
(2)从五边形的任一顶点出发,连结不相邻的两个顶点,将五边形分割成三个三角形,得出五边形内角和为540°(如图一);
(3)在五边形内任取一点,连结各顶点,将五边形分割成五个三角形,得出五边形内角和为5×180°-360°=540°(如图二);
(4)从五边形任意一边上取一点,连接不相邻的顶点,将五边形分割成四个三角形内角和为4×180°-180°=540°(如图三);
(5)六边形可怎样剪成三角形求内角和?n边形呢?
(6)总结规律:多边形内角和为(n-2)×180°(n≥3)。
3、议一议:
(1)过四边形一个顶点的对角线把四边形分成两个三角形;
(2)过五边形一个顶点的对角线把五边形分成( )个三角形;
(3)过六边形一个顶点的对角线把六边形分成( )个三角形。
(4)过n边形一个顶点的对角线把n边形分成( )个三角形;
二、正多边形定义:
1、 出示课本第109页想一想图:(思考,图中的多边形各是几边形,它们的边和角有什么特点)
2、多边形定义:在平面内,内角都相等,边也相等的多边形是正多边形。
3、填表:
正多边形的边数
3
4
5
6
8
…
教学目标
【知识与技能】初步掌握多边形内角和与外角和,进一步了解转化的数学思想。
【过程与方法】经历质疑、猜想、归纳等活动,发展学生的合情推理能力,积累数学活动的经验,在探索中学会与人合作,学会交流自己的思想和方法.
【情感态度与价值观】让学生体验猜想得到证实的成功喜悦和成就感,在解题中感受生活中数学的存在,体验数学充满着探索和创造. 教学重难点
【教学重点】多边形内角和外角和的探索和应用。【教学难点】转化数学思想方法的渗透。
第一环节 创设现实情境,提出问题,引入新课
1.多媒体展示八卦图,看到这幅图,你想到什么数学知识。2. 回顾三角形内角和的探索方法。
第二环节 实验探究
1、提出问题:三角形的内角和为180°,那么多边形的内角和是多少度呢?从四边形开始研究. 活动一:利用四边形探索四边形内角和 要求:先独立思考再小组合作交流完成.)(师巡视,了解学生探索进程并适当点拨.)(生思考后交流,把不同的方案在纸上完成.)
……(组间交流,教师课件展示几种方法)
教师帮助学生反思:在刚才的探索活动中,大家有不同的方法求四边形的内角和,这些看似不同的方法有没有相似之处? 进而引导学生得出:我们是把四边形的问题转化成三角形,再由三角形内角和为180°,求出四边形内角和为360°,从而使问题得到解决!进一步提出新的探索活动。
2、活动二:探索五边形、六边形、七边形、八边形的内角和。(要求:独立思考,自主完成.)
3、探索n边形内角和,并试着说明理由。
4、学会了求多边形的内角和你还想学些什么知识?你准备如何求多边形的外角和?
5、大胆猜测多边形的外角和,并想办法验证自己的猜测。
6、用所学知识求八边形的内外角和。
知识与技能:经历探索多边形的外角和公式的过程;会应用公式解决问题;
过程与方法:培养学生把未知转化为已知进行探究的能力,在探究活动中,进一步发展学生的说理能力与简单的.推理能力.
情感态度与价值观:让学生体验猜想得到证实的成功喜悦和成就感,在解题中感受生活中数学的存在,体验数学充满着探索和创造.
教学重点:多边形外角和定理的探索和应用.
教学难点:灵活运用公式解决简单的实际问题;转化的数学思维方法的渗透.
教学准备:多媒体课件
教学过程
第一环节创设情境,引入新课(5分钟,学生理解情境,思考问题)
问题:(多媒体演示)清晨,小明沿一个五边形广场周围的小路,按逆时针方向跑步。
(1)小明每从一条街道转到下一条街道时,身体转过的角是哪个角?
(2)他每跑完一圈,身体转过的角度之和是多少?
(3)在上图中,你能求出∠1+∠2+∠3+∠4+∠5的结果吗?你是怎样得到的?
第二环节问题解决(10分钟,小组讨论,合作探究)
对于上述的问题,如果学生能给出一些合理的解释和解答(例如利用内角和),可以按照学生的思路走下去。然后再给出“小亮的做法”或以“小亮做法”为提示,鼓励学生思考。如果学生对于这个问题无法突破,教师可以给出“小亮的做法”,或引导学生按“小亮的做法”这样的思路去思考,以便解决这个问题。
小亮是这样思考的:如图所示,过平面内一点O分别作与五边形ABCDE各边平行的射线OA′,OB′,OC′,OD′,OE′,得到∠α,∠β,∠γ,∠δ,∠θ,其中,∠α=∠1,∠β=∠2,∠γ=∠3,∠δ=∠4,∠θ=∠5.
这样,∠1+∠2+∠3+∠4+∠5=360°
问题引申:
1.如果广场的形状是六边形那么还有类似的结论吗?
2.如果广场的形状是八边形呢?
第三环节探索多边形的外角与外角和(10分钟,全班交流,学生理解识记)
1.多边形内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角。
2.在每个顶点处取这个多边形的一个外角,它们的和叫做这个多边形的外角和。
探究多边形的外角和,提出一般性的问题:一个任意的凸n边形,它的外角和是多少?
鼓励学生用多种方法解决这个问题,可以参考第二环节解决特殊问题的方法去解决这个一般性的问题。
方法Ⅰ:类似探究多边形的内角和的方法,由三角形、四边形、五边形…的外角和开始探究;
方法Ⅱ:由n边形的内角和等于(n-2)180°出发,探究问题。
结论:多边形的外角和等于360°
(1)还有什么方法可以推导出多边形外角和公式?
(2)利用多边形外角和的.结论,能否推导出多边形内角和的结论?
第四环节巩固练习(10分钟,学生利用知识独立解决问题)
例1一个多边形的内角和等于它的外角和的3倍,它是几边形?
随堂练习
1.一个多边形的外角都等于60°,这个多边形是几边形?
2.右图是三个不完全相同的正多边形拼成的无缝隙、不重叠的图形的一部分,这种多边形是几边形?为什么?
挑战自我:
1.在四边形的四个内角中,最多能有几个钝角?最多能有几个锐角?
2.在n边形的n个内角中,最多能有几个钝角?最多能有几个锐角?
挑战自我的2个问题,对于新授课上的学生而言,难度是比较大的。因为之前不管是多边形的内角和还是外角和,基本上都是利用等式,从“正向”解决的。而这里要解决的问题,在解决的过程中,需要用到简单的不等式知识和“反证”的思想,对于初次接触这些的学生而言,难度是比较大的。教师要注意讲解的方式方法。
第五环节课时小结(3分钟,学生加深记忆)
多边形的外角及外角和的定义;
多边形的外角和等于360°;
在探求过程中我们使用了观察、归纳的数学方法,并且运用了类比、转化等数学思想.
第六环节布置作业:
习题4.11
A组(优等生)第1,2,3题
B组(中等生)1、2
在教学中我给学生很大的思考空间,如在小组交流,使学生认识到可以通过多种突径来验证一般的四边形内角和,可以运用量一量,剪一剪,分一分等方法进行验证。
探究过程中归纳、猜想和验证的数学思想渗透,使学生感悟到数学的神奇和奥妙,提高了学生学习数学的兴趣,增强了学好数学的信心。在此基础上,再引导学生通过把四边形分割成三角形的方法,理论上再证明这一规律就更加完美。阿探究过程中归纳、猜想和验证的数学思想渗透,使学生感悟到数学的神奇和奥妙,提高了学生学习数学的兴趣,增强了学好数学的信心。在此基础上,再引导学生通过把四边形分割成三角形的方法,理论上再证明这一规律就更加完美。
(2)能力目标:让学生学会根据“三角形的内角和是180 º这一知识求三角形中一个未知角的度数;
(3)情感目标:激发学生主动参与、自主探索的意识,锻炼动手能力,发展空间观念。重点:让学生经历“三角形内角和是180º”这一知识的形成与应用的全过程。难点:通过量一量,折一折,撕一撕等活动验证三角形的内角和为180º。
关键:组织学生按小组进行探究活动,讨论交流。
基于本节课的特点应着重采用独立探究、合作交流与教师引导的教学方法
一、复习旧知识
师:最近我们一直在研究三角形的有关知识,谁能给我们讲一讲自己对三角形的了解呢?
生:请两到三为同学回答
师:对回答的同学进行鼓励表扬,今天我们将要继续研究三角形的有关知识。
二、创设问题情境
师:什么是三角形的内角,三角形有几个内角?
生:就是三角形内的三个角,每个三角形都有三个内角。
师:表扬鼓励回答的同学,三条线段在围成三角形后,在三角形内形成了三个角,我们把三角形内的三个角分别叫做三角形的内角。
师:在黑板上画出两个大小不一的三角形,问同学们这两个三角形哪个三角形的内角和更大一些?
师:同学们的想法不一,那么到底谁说的对呢?这节可我们就一起来研究这个问题。
三、动手操作、自主探究
师:拿出两副三角板,问同学们这两个三角板的三个内角分别是多少度?
生:一个是30º、60º、90º;另一个是45º、45º、90º。
师:要求同学们求一求他们的内角和,会得到这样两个算式:90º+30º+60º=180º,90º+45º+45º=180º。反问同学们其他的任意三角形的内角和也是180º吗?请同学们想想办 法,通过动手操作验证自己的猜想?在小组内交流自己的想法。
(1)侧量的方法
要求学生在纸上画出不同形状的三角形,分别用量角器量出三个角的度数并求出内角之和,将所得的数据填写在表格中与小组的成员进行交流。
(2)拼合的方法
将三角形的三个角剪下来,拼成一个平角,得到三角形的内角和是180º。
通过测量,拼合等方法验证了无论是什么样的三角形,内角和都是180º,这就是三角形的内角和定理。
四、例题讲解
学会了知识,我们就要懂得去运用,下面我们来看看三角形的内角和有什么用处吧!例1 在ΔABC中,∠A=70º,∠B=30º,请问∠C是多少度?
解∠C=180º-70º-30º=80º
例2 在直角ΔABC中,∠A为直角,∠B=32.8º,∠C是多少度?
解∠C=180º-90º-32.8º=57.2º
五、巩固练习
练习1判断
1、一个三角形的内角度数分别是80º、75º、24 º。(×)
2、三角形越大,他的内角和越大。(×)
3、钝角三角形的两个内角和大于90 º。(×)
练习2 在ABC中,A=B=2C,则三角形的三个内角分别是?
解∠A+∠B+∠C=180º
∠A=∠B=2∠C 则2∠C+2∠C+∠C=180º
∠C=36º∠A=∠B=72º
六、小结
我们这节课主要学习了什么?
这节课我们学习了三角形的内角和,并运用它解决了相关的数学问题。
七、布置作业
1、阅读本节所学的内容。
旧市学校 李姿慧
教学目标
1.知识与技能 :
⑴掌握三角形内角和定理的证明。
⑵初步体会添加辅助线证题,培养学生观察、猜想和论证的能力 2.过程与方法 :
经历探索三角形内角和定理的过程,初步体会思维的多样性,给学生渗透化归的数学思想。
3.情感态度与价值观:
通过师生的共同活动,培养学生的逻辑思维能力,进而激发学生的求知欲和学习的 积极主动性。使学生主动探索,敢于实验,勇于发现,合作交流。
教学重点
三角形内角和定理的证明及其简单的应用。
教学难点
在三角形内角和定理的证明过程中如何添加辅助线。
教学用具
多媒体、三角板、学生每人准备一个纸片三角板。
教学过程
一、引入新课
分享小故事:《内角三兄弟之争》
在一个直角三角形里住着三个内角,平时,它们三兄弟非常团结.可是有一天,老二突然不高兴,发起脾气来,它指着老大说:“你凭什么度数最大,我也要和你一样大!”“不行啊!”老大说:“这是不可能的,否则,我们这个家就再也围不起来了„„”“为什么?” 老二很纳闷.同学们,你们知道其中的道理吗?从而引出本节课的课题《三角形的内角和定理》
二、合作探究
1、[师]现在,我们来看两个电脑的动画演示,验证这个结论是不是正确的。
动画演示一 [师]先将△ABC中的∠A通过平移和旋转到如上图所示的位置,再将图中的∠B通过平移到上图所示的位置。
拖动点A,改变△ABC的形状,三角形的三个内角和总等于180°
2.动画演示二
[师]先将三角形纸片(图(1))一角折向其对边,使顶点落在对边上,折线与对边平行(图(2)),然后把另外两角相向对折,使其顶点与已折角的顶点相重合(图(3)(4)。)[师]由电脑的动画演示可知:∠A、∠B、∠C拼成的角总是一个平角,由此得到三角形的三个内角之和等于180°。[让学生直观感受,调动其研究兴趣]
我们通过观察与实验的方法猜想得到的结论不一定正确可靠,要判定一个数学结论正确与否,需要进行有根有据的推理、证明。这就是我们这节课所要研究的内容。
3、定理证明
[师]接下来我们来证明这个命题:三角形的三个内角之和等于180°。这是一个文字命题,证明时需要先做什么呢?
[生]需要先画出图形、根据命题的条件和结论,结合图形写出已知、求证。[有本章前面几节作为基础,学生有能力画图,写已知,求证。] [师]很好!怎样证明呢?[ 联想前面撕角拼角的方法,学生能想到。让学生体会转化的数学思想方法,把新知识化为旧知识。] [生]添加辅助线,延长BC到点D,过点C作CE∥AB,∠A=∠ACE,∠B=∠ECD,进而将三个内角拼成平角。[通过以上分析、研究,让学生讲解依据:根据平行线的性质,利用同位角,内错角把三角形三内角转化为一个平角。使学生亲身参与数学研究的过程,并在过程中体会数学研究的乐趣。] [实验法] 已知:△ABC 求证:∠A+∠B+∠C=180° 证明:延长BC到点D,过点C作CE∥AB
∵CE∥AB
∴∠A=∠ACE(两直线平行,内错角相等)
∠B=∠ECD(两直线平行,同位角相等)
∵∠ACE+∠ECD+∠BCA=180°
∴∠A+∠B+∠BCA=180°(等量代换)
[教师引导,要把三角形三个内角转化为上述两种角,就要在原图形上添加一些线,这些线叫做辅助线,在平面几何里,辅助线常画成虚线,添辅助线是解决问题的重要思想方法。]
4、探究讨论:
五个学生为一组,探索三角形内角和定理的其它证法分析、证明方法。
[师]现在,各组派一名代表说明证明的思路。[学生自己得出的猜想和证明会更让他们乐于接受,而方法也在此过程中渗透给了学生。]
证法1.[生1]过点A作直线PQ∥BC,使三个角凑到“A”处。[通过分析、研究,让不同做法的学生讲解依据。]根据平行线的性质,利用内错角,把三角形三内角转化为一个平角。
证明:过点A作直线PQ∥BC
∵PQ∥BC
∴∠B=∠PAB(两直线平行,内错角相等)
∠C=∠QAC(两直线平行,内错角相等)
∵∠PAB+∠QAC+∠BAC=180°
∴∠B+∠C+∠BAC=180°(等量代换)证法2:[生5]过点A作AD∥BC,有∠C=∠2,将三个内角拼成一对同旁内角。
证明:过点A作射线AQ∥BC
∴∠C=∠QAC(两直线平行,内错角相等)
∠QAC+∠BAC+∠B=180°(两直线平行,同旁内角互补)
∴∠BAC+∠B+∠C=180°(等量代换)3 [师]同学们讨论得真棒。我们由180°联想到一平角等于180°,一对邻补角之和等于180°,两直线平行,同旁内角互补。由此,大家提供了这么多的的证明方法,说明你们能学以致用。接下来,我们做练习以巩固三角形内角和定理。[根据以上几种辅助线的作法,选择一种,师生合作,写出示范性证明过程。其余由学生自主完成证明过程。目的是培养学生的思维能力和推理能力。进一步搞清作辅助线的思路和合乎逻辑的分析方法,充分让学生表述自己的观点,这个过程对培养学生的能力极为重要,依据不充分时,学生可争论,师生共同小结。]
三、例题讲解
【例】在△ABC中,∠A=55°,∠B=25°,求∠C的度数。
变式一:∠A=40°,∠B比∠C大30°,求∠B、∠C的度数。
变式二:∠A的度数是∠B的度数的3倍,∠C比∠B大15°, 求∠A、∠B、∠C的度数。
[学生自主探索,教师巡视、诊断,让学生上台板演,学生辨析,教师小结。] [使学生灵活应用三角形内角和定理。用代数方法解决几何问题(方程思想)是重要的方法。]
四、随堂练习
1.(苏州·中考)△ABC的内角和为()
A.180° B.360° C.540° D.720°
2.在直角三角形ABC中,一个锐角为40°,则另一个锐角是_______°.3.(济宁·中考)若一个三角形三个内角度数的比为2︰3︰4,那么这个三角形是()
A.直角三角形 B.锐角三角形 C.钝角三角形 D.等边三角形
五、师生共同小结
本节课你们收获了什么?
六、课外作业
1.教材课后练习1、2、2.学法大视野第三课时 教学反思
三角形的有关知识是“空间与图形”中最为核心、最为重要的内容,它不仅是最基本的直线型平面图形,而且几乎是研究所有其它图形的工具和基础.而三角形内角和定理又是三角形中最为基础的知识,也是学生最为熟悉且能与小学、中学知识相关联的知识,看似简单,但如果处理不好,会导致学生有厌烦心理。
本节课的教学实现以下特点:
(1)通过折纸与剪纸等操作让学生获得直接经验,然后从学生的直接经验出发,逐步转到符号化处理,最后达到推理论证的要求。(2)充分展示学生的个性,体现“学生是学习的主人”这一主题。
【多边形内角和1的教案】推荐阅读:
《多边形的内角和》教案04-03
多边形的内角和初中数学教案范文01-30
八年级数学教学设计:多边形的内角和12-11
多边形的面积复习教案01-06
相似多边形教案09-25
《四边形的内角和》的教学反思09-30
数学上册《正多边形和圆》教学反思07-17
《画多边形》优秀教案及课后反思02-25
多边形面积的计算教学反思10-26
钉子板上的多边形教材06-28