圆的定理及证明

2025-03-26 版权声明 我要投稿

圆的定理及证明(精选14篇)

圆的定理及证明 篇1

内容:圆周角的度数等于它所对弧上的圆心角度数的一半。证明:

情况1:

如图1,当圆心O在∠BAC的一边上时,即A、O、B在同一直线上时:

图1

∵OA、OC是半径 解:∴OA=OC ∴∠BAC=∠ACO(等腰三角形底角相等)∵∠BOC是△AOC的外角

∴∠BOC=∠BAC+∠ACO=2∠BAC 情况2:

如图2,,当圆心O在∠BAC的内部时: 连接AO,并延长AO交⊙O于D

图2

∵OA、OB、OC是半径 解:∴OA=OB=OC ∴∠BAD=∠ABO,∠CAD=∠ACO(等边对等角)∵∠BOD、∠COD分别是△AOB、△AOC的外角

∴∠BOD=∠BAD+∠ABO=2∠BAD(三角形的外角等于两个不相邻两个内角的和)∠COD=∠CAD+∠ACO=2∠CAD(三角形的外角等于两个不相邻两个内角的和)∴∠BOC=∠BOD+∠COD=2(∠BAD+∠CAD)=2∠BAC 情况3:

如图3,当圆心O在∠BAC的外部时:

图3

连接AO,并延长AO交⊙O于D连接OC,OB。解:∵OA、OB、OC、是半径 ∴OA=OB=OC ∴∠BAD=∠ABO(等腰三角形底角相等),∠CAD=∠ACO(OA=OC)∵∠DOB、∠DOC分别是△AOB、△AOC的外角

∴∠DOB=∠BAD+∠ABO=2∠BAD(三角形的外角等于两个不相邻两个内角的和)∠DOC=∠CAD+∠ACO=2∠CAD(三角形的外角等于两个不相邻两个内角的和)∴∠BOC=∠DOC-∠DOB=2(∠CAD-∠BAD)=2∠BAC 圆心角等于180度的情况呢?

看情况1的图,圆心角∠AOB=180度,圆周角是∠ACB,显然因为∠OCA=∠OAC=∠BOC/2 ∠OCB=∠OBC=∠AOC/2 所以∠OCA+∠OCB=(∠BOC+∠AOC)/2=90度 所以2∠ACB=∠AOC 圆心角大于180度的情况呢?

看情况3的图,圆心角是(360度-∠AOB),圆周角是∠ACB,只要延长CO交园于点D,由圆心角等于180度的情况可知∠ACD=∠ABD=90度 根据情况3同理可证:∠BOC=2∠BAC=2∠BDC 根据情况1和情况3同理可证:∠AOC=2∠ADC=2∠ABC 所以∠ACB+∠ADB=∠ACB+∠ADC+∠BDC=∠ACB+∠ABC+∠BAC=180度 即∠ACB=180度-∠ADB 由情况2可知:∠AOB=2∠ADB 所以360度-∠AOB=2(180度-∠ADB)=2∠ACB

切线长定理

内容:切线长定理,是初等平面几何的一个定理。在圆中,在经过圆外一点的切线,这一点和切点之间的线段叫做这点到圆的切线长。它指出,从圆外一点引圆的两条切线,它们的切线长相等。证明:

欲证AC = AB,只需证△ABO≌ △ACO。

如图,OC、OB为圆的两条半径,又∠ABO = ∠ACO=90° 在Rt△ABO和Rt△ACO中

∴Rt△ABO ≌ Rt△ACO(H.L)

∴AB=AC,且∠AOB=∠AOC,且∠OAB=∠OAC。[3]

弦切角定理

内容:弦切角的度数等于它所夹的弧所对的圆心角度数的一半,等于它所夹的弧所对的圆周角度数。证明:

分三种情况

(1)圆心O在∠BAC的一边AC上 ∵AC为直径 ∴弧CmA=弧CA ∵弧CA为半圆, ∴弧CmA的度数为180° ∵AB为圆的切线 ∴∠CAB=90°

∴弦切角∠BAC的度数等于它所夹的弧的度数的一半(2)圆心O在∠BAC的内部.过A作直径AD交⊙O于D,在优弧m所对的劣弧上取一点

E,连接EC、ED、EA。则 ∵弧CD=弧CD ∴∠CED=∠CAD ∵AD是圆O的直径 ∴∠DEA=90° ∵AB为圆的切线 ∴∠BAD=90° ∴∠DEA=∠BAD ∴ ∠CEA=∠CED+∠DEA=∠CAD+∠BAD=∠BAC 又∠CEA的度数等于弧CmA的度数的一半

∴弦切角∠BAC的度数等于它所夹的弧的度数的一半

(3)圆心O在∠BAC的外部 过A作直径AD交⊙O于D,连接CD ∵AD是圆的直径 ∴∠ACD=90° ∴∠CDA+∠CAD=90° ∵AB是圆O的切线 ∴∠DAB=90° ∴∠BAC+∠CAD=90° ∴∠BAC=∠CDA ∵∠CDA的度数等于弧CmA的度数的一半。

∴弦切角∠BAC的度数等于它所夹的弧的度数的一半。

切割线定理

内容:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。与圆相交的直线是圆的割线。切割线定理揭示了从圆外一点引圆的切线和割线时,切线与割线之间的关系。这是一个重要的定理,在解题中经常用到。

推论: 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。证明:

设ABP是⊙O的一条割线,PT是⊙O的一条切线,切点为T,则PT²=PA·PB。

图1

证明:连接AT,BT。

∵ ∠PTB=∠PAT(弦切角定理);∠APT=∠TPB(公共角); ∴ △PBT∽△PTA(两角对应相等,两三角形相似); ∴PB:PT=PT:AP; 即:PT²=PB·PA。

垂径定理

内容:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。证明:

如图,在⊙O中,DC为直径,AB是弦,AB⊥DC于点E,AB、CD交于E,求证:AE=BE,弧AC=弧BC,弧AD= 弧BD 连接OA、OB分别交⊙O于点A、点B ∵OA、OB是⊙O的半径 ∴OA=OB ∴△OAB是等腰三角形 ∵AB⊥DC ∴AE=BE,∠AOE=∠BOE(等腰三角形三线合一)

圆的定理及证明 篇2

1 削弱定理的条件

故F (x) 在a点连续;同理

故F (x) 在b点也连续。

又由f (x) 在 (a, b) 内可导知:

F (x) 在 (a, b) 内连续可导。

因此, F (x) 满足: (1) 在[a, b]上连续;

(2) 在 (a, b) 内可导; (3) F (a) =F (b) ,

2 推广至无限区间

令η=tanξ, 则

令η=tanξ, 则

证明:与1、2同,

令 F (y) =f (x) =f (tany) ,

则:F (y) 满足: (1) 在内可导;

令η=tanξ, 则

摘要:将罗尔定理条件削弱得出较一般的结论, 并利用削弱条件后的结论及反三角函数给出无限区间上罗尔定理的严格证明.

关键词:罗尔定理,反正切函数,映射

参考文献

[1]陈传璋, 等.数学分析[M].北京:高等教育出版社, 1979.

[2]华东师范大学数学系.数学分析[M].北京:高等教育出版社, 1981.

[3]Б.П.吉米多维奇.数学分析习题集题解[M].济南:山东科学技术出版社, 1999.

[4]王景克.高等数学解题方法与技巧[M].北京:中国林业出版社, 2001.

勾股定理的证明及简单计算说课稿 篇3

马正平

各位老师、评委:

大家好!我叫马正平,今天我说课的题目是<<勾股定理的证明及简单计算>>。我将从以下几个方面对本节课进行阐述:

一、教材分析

勾股定理是中学数学几个重要定理之一。它揭示了一个直角三角形三条边之间的数量关系,是解直角三角形的主要根据之一,在实际生活中用途很大。勾股定理的验证和应用在理论上占有重要地位,学好本节至关重要。

二、教学目标

知识与技能:理解和掌握勾股定理的证明方法。能够灵活地运用勾股定理进行计算。

过程与方法:让学生经历“观察-猜想-归纳-验证”的数学过程,并从中体会数形结合及从特殊到一般的数学思想。培养学生观察、比较、分析、推理的能力。

情感态度与价值观:培养学生的合作交流意识和探索精神。

三、教学重点及难点 重点:勾股定理及应用

难点:用拼图方法、面积法证明勾股定理

四、教法和学法 教法指导:

针对八年级学生的知识结构和心理特征,本节课采取自主探究发现式教学,它有利于提高学生的思维能力,能有效地激发学生的思维积极性。让学生通过观察、分析、讨论、操作、归纳,理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力。并利用教具与多媒体进行教学。

学法指导:

在教师的组织引导下,采用自主探索、合作交流的研讨式学习方式,让学生思考问题,获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。

五、教学过程设计

根据学生的认知规律和学习心理对于本节课的教学设计如下:

(一)复习引入

以提问的形式辅助回顾勾股定理的内容,唤醒学生的储备知识,然后顺势介绍勾股定理的证明方法的探究是一个古老而又永恒的话题,激发学生的 学习热情及探究欲望。

(二)探究新知 拼图法验证勾股定理

教师引导学生按要求拼图,观察与分析,组织学生分组讨论调动全班学生的积极性,达到人人参与的效果。接着全班交流,小组代表发言,其他小组作出评价和补充,教师及时进行启发性点拨。最后师生共同归纳,达成一致意见,最终解决疑难。通过这些实际操作,让学生加深数形结合的思想的理解,拼图也能产生感性认知。给学生充分的时间和空间参与到教学活动中来,发挥他们的主观能动性,进一步提高学生的学习兴趣,利用分组讨论加强学生的合作意识。

(三)综合探究 勾股定理的应用

这一环节中我设计了一个与生活实际密切相关的题目,再次加深对勾股定理的理解及应用,使学生深切体会到勾股定理与我们的生活密切相关。采用合作探究的方法小组内探究解法并派代表讲解自己的思路,在互评互议中得到共同提高。

(四)巩固练习

采用小组抢答的形式小组内合作交流,小组间公平竞争的形式,小组结果全班展示,小组代表板演或说明理由。

(五)总结

让学生谈一谈本节课的收获,畅所欲言。通过小结培养学生的归纳概括能力,引导学生对知识要点进行总结,梳理学习思路。

(六)作业布置

针对学生认知水平的差异设计有层次有弹性的作业,既能巩固知识,又能使学有余力的同学获得更大发展。

六、教学反思

阿波罗尼定理之逆定理的一个证明 篇4

宁夏回族自治区固原市五原中学马占山(756000)

阿波罗尼定理之逆定理 如果一个凸四边形的四边的平方和等于对角线的平方和,那么这个四边形是平行四边形.

笔者在数学中国几何天地网站论坛中得知该定理历史悠久,2004年李明波先生给出了证明. 本文给出这个定理的证明.为证定理,在此首先给出一个几何命题.命题在ABC中,点D是边BC的中点,则 ABAC2(AD

证明:过点D作DFBC于点F.在RtABE,RtADE,RtACE中

由勾股定理可得:AD2AE2DE2AB2BE2DE2AB2(BDDE)2DE2 2221BC2).4AB2BD22BDDE(1)

同样有:AD2AE2DE2AC2CE2DE2AC2(CDDE)2DE2 AC2CD22CDDE(2)

(1)+(2)得

2AD2AB2AC2(BD2CD2)AB2AC22(AD2

下面证明给出定理的证明.1BC2)4

正弦定理证明 篇5

江苏省锡山高级中学杨志文

新课程必修数学5的内容主要包括解三角形、数列、不等式。这些内容都是高中数学中的传统内容。其中“解三角形”既是高中数学的基本内容,又有较强的应用性。在历次教材改革中都作为中学数学中的重点内容,一直被保留下来。在这次新课程改革中,新普通高中《数学课程标准》(以下简称《标准》)与原全日制普通高级中学《数学教学大纲》(以下简称《大纲》)相比,“解三角形”这块内容在安排顺序上进行了新的整合。本文就《标准》必修模块数学5第一部分“解三角形”的课程内容、教学目标要求、课程关注点、内容处理上等方面的变化进行简要的分析,并对教学中应注意的几个问题谈谈自己的一些设想和教学建议,供大家参考。

一、《标准》必修模块数学5中“解三角形”与原课程中“解斜三角形”的比较

1.课程内容安排上的变化

“解三角形”在原课程中为“解斜三角形”,安排在“平面向量”一章中,作为平面向量的一个单元。而在新课程《标准》中重新进行了整合,将其安排在必修模块数学5中,独立成为一章,与必修模块数学4中的“平面向量”分别安排在不同的模块中。

2.教学要求的变化

原大纲对“解斜三角形”的教学要求是:

(1)掌握正弦定理、余弦定理,并能运用它们解斜三角形,能利用计算器解决解斜三角形的计算问题。

(2)通过解三角形的应用的教学,提高运用所学知识解决实际问题的能力。

(3)实习作业以测量为内容,培养学生应用数学知识解决实际问题的能力和实际操作的能力。《标准》对“解三角形”的教学要求是:

(1)通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。

(2)能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题。由此可以看出,《标准》在计算方面降低了要求,取消了“利用计算器解决解斜三角形的计算问题”的要求,而在探索推理方面提高了要求,要求“通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理”。

3、课程关注点的变化

原《大纲》中,解斜三角形内容,比较关注三角形边角关系的恒等变换,往往把侧重点放在运算上。而《标准》则关注运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题。侧重点放在学生探究和推理能力的培养上。

4、内容处理上的变化

原《大纲》中,解斜三角形作为平面向量知识的应用,突出其工具性和应用性。而《标准》将解三角形作为几何度量问题来处理,突出几何的作用,为学生理解数学中的量化思想、进一步学习数学奠定基础。解三角形处理的是三角形中长度、角度、面积的度量问题,长度、面积是理解积分的基础,角度是刻画方向的,长度、方向是向量的特征,有了长度、方向,向量的工具自然就有用武之地。

二、教学中应注意的几个问题及教学建议

原《大纲》中解斜三角形的内容,比较关注三角形边角关系的恒等变换,往往把侧重点放在运算上。而《标准》将解三角形作为几何度量问题来展开,强调学生在已有知识的基础上,通过对任意三角形边角关系的探究,发现并掌握三角形中的边长与角度之间的数量关系,解决简单的三角形度量问题。这就要求在教学过程中,突出几何的作用和数学量化思想,发挥学生学习的主动性,使学生的学习过程成为在教师引导下的探究过程、再创造过程。因此在教学中应注意以下几个问题。

1.要重视探究和推理

《标准》要求“通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理”。因此建议在教学中,既要重视从特殊到一般的探索学习过程的教学,又要重视数学的理性思维的培养。教学中不要直接给出定理进行证明,可通过学生对三角形边与角的正弦的测量与计算,研究边与其对角的正弦之间的比,揭示它们在数量上的规律,发现正弦定理的结论,然后再从理论上进行论证,从而掌握正弦定理。从中体会发现和探索数学知识的思想方法。

参考案例:正弦定理的探索、发现与证明

教学建议:建议按如下步骤设计教学过程:

(1)从特殊三角形入手进行发现

让学生观察并测量一个三角板的边长。

提出问题:你能发现三边长与其对角的正弦值之比之间的关系吗?

例如,量得三角板三内角300,600,900所对的三边长分别约为5cm,8.6cm,10cm,58.610,101010 000

sin30sin60sin90

abc

对于特殊三角形,我们发现规律:。

sinAsinBsinC

则有:

提出问题:上述规律,对任意三角形成立吗?(2)实验,探索规律

二人合作,先在纸上做一任意锐角(锐角或钝角)三角形,测量三边长及其三个对角,然后用计算器计算每一边与其对角正弦值的比,填入下面表中,验证前面得出的结论是否正确。(其中,角精确到分,忽略测量误差,通过实验,对任意三角形,有结论:

abc,即在一个三角形中,

sinAsinBsinC

各边和它所对的角的正弦的比相等。

提出问题:上述的探索过程所得出的结论,只是我们通过实验(近似结果)发现的一个结果,如果我们能在理论上证明它是正确的,则把它叫做正弦定理。那么怎样证明呢?

(4)研究定理证明的方法方法一:(向量法)①若△ABC为直角三角形,由锐角三角函数的定义知,定理显然成立。②若△ABC为锐角三角形,过点A做单位向量j垂直于AC,则向量j与向量的夹角为900-A,向

量j

与向量CB的夹角为900-C,(如图1),且有:ACCBAB,所以j·(+)= j·即j·+ j· = j·AB 展开|j||AC|cos900+ | j||CB|cos(900-C)=| j|||cos(900-A)

ac

。

sinAsinC

cbabc

同理,过点C做单位向量j垂直于,可得:,故有。

sinCsinBsinAsinBsinC

③若△ABC为钝角三角形,不妨设角A>900(如图2),过点A做单位向量j垂直于AC,则向量j与

则得 a sinC = c sinA,即

向量AB的夹角为A-900,向量j与向量的夹角为900-C,且有:,同样可证得:

abc

。

sinAsinB

提出问题:你还能利用其他方法证明吗?

方法二:请同学们课后自己利用平面几何中圆内接三角形(锐角,钝角和直角)及同弧所对的圆周角相等等知识,将△ABC中的边角关系转化为以直径为斜边的直角三角形中去探讨证明方法。

2.要重视综合应用

《标准》要求掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。建议在正弦定理、余弦定理的教学中,设计一些关于正弦定理、余弦定理的综合性问题,提高学生综合应用知识解决问题的能力。如可设计下面的问题进行教学:

参考案例:正弦定理、余弦定理的综合应用 C 如图,在四边形ABCD中,已知ADCD,AD=10,AB=14,BDA=60,BCD=135.求BC的长.教学建议:

引导学生进行分析,欲求BC,需在△BCD中求解,∵BCD=135,BDC=30,∴需要求BD,而BD需在△ABD中求解.再引导学生将

A B

四边形问题转化为三角形问题,选择余弦定理求BD,再由正弦定理

例2图 求BC。

3.要重视实际应用

《标准》要求运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题。因此建议在教学中,设计一些实际应用问题,为学生体验数学在解决问题中的作用,感受数学与日常生活及与其他学科的联系,培养学生的数学应用意识,提高学生解决实际问题的能力。在题目的设计中要注意对恒等变形降低要求,避免技巧性强的变形和繁琐的运算。

参考案例:解三角形在实际中的应用

参考案例1.航海中甲船在A处发现乙船在北偏东45,与A的距离为10海里的C处正以20海里/h的速度向南偏东75的方向航行,已知甲船速度是203海里/h,问甲船沿什么方向,用多少时间才能与

乙船相遇?

教学建议:引导学生依据题意画出示意图,将实际问题转化为解三角形问题。若设甲船与乙船经过t小时在B处相遇,构建ACB,容易计算出AB20海里,BC20海里,根据余弦定理建立关于t的方程,求出t,问题就解决了。

答: 甲船沿北偏东75的方向,经过0.5小时与乙船相遇.参考案例2.为了测量某城市电视塔的高度,在一条直道上选 择了A,B,C三点,使ABBC60m,在A,B,C三点

例1图 DA 观察塔的最高点,测得仰角分别为45,54.2,60,若测量 E

者的身高为1.5m,试求电视塔的高度(结果保留1位小数).F 教学建议:引导学生依据题意画出示意图如图,将实际问题转化为

解三角形问题。要求电视塔的高度。只要求出DE的长。将问题中的已

知量、未知量集中到有关三角形中,构造出解三角形的数学模型。在例2图 ACE中和BCE中应用余弦定理,使问题获得解决.答: 电视塔的高度约为158.3m.4.要重视研究性学习

解三角形的内容有较强的应用性和研究性,可为学生提供丰富的研究性素材。建议在教学内容的设计上探索开放,在教学形式上灵活多样。可设计一些研究性、开放性的问题,让学生自行探索解决。参考案例:研究性学习

课外研究题:将一块圆心角为120,半径为20厘米的扇形铁片裁成一块矩形,请你设计裁法,使裁得矩形的面积最大?并说明理由.

教学建议:这是一个研究性学习内容,可让学生在课外两人一组合作完成,写成研究报告,在习题课上让学生交流研究结果,老师可适当进行点评。

参考答案:这是一个如何下料的问题,一般有如图(1)、图(2)的两种裁法:即让矩形一边在扇形的一条半径OA上,或让矩形一边与弦AB

平行。从图形的特点来看,涉及到线段的长度和角度,将

这些量放置在三角形中,通过解三角形求出矩形的边长,再计算出两种方案所得矩形的最大面积,加以比较,就可以得出问题的结论.

NBB

PO图(2)

QM

O图(1)

按图(1)的裁法:矩形的一边OP在OA上,顶点M在圆弧上,设MOA,则:

时,Smax200.

4按图(2)的裁法: 矩形一边PQ与弦AB平行,设MOQ,在MOQ中,OQM9030120,由正弦定理,得:

sin120

又MN2OMsin(60)40sin(60),MQ

20sin

3sin. 3

MP20sin,OP20cos,从而S400sincos200sin2.即当

∴SMQMN

sinsin(60)cos(260)cos60. 33



∴当30时,Smax由于

400. 3

400平方厘米. 200,所以用第二中裁法可裁得面积最大的矩形,最大面积为33

也可以建议学生在课外自行寻找研究性、应用性的题目去做,写出研究或实验报告,在学校开设的研究性学习课上进行交流,评价。

参考文献:

①全日制普通高中级学《数学教学大纲》。人民教育出版社。2002年4 月。

推广的罗尔定理的证明及应用 篇6

若函数f满足如下条件: ( ⅰ) f在闭区间[a,b]上连续;( ⅱ) f在开区间 (a,b)内可导; ( ⅲ) f ( A) = f ( b),则在(a,b)内至少存在一点ξ,使得f' ( ξ) = 0.

2. 推广的罗尔定理

设(a,b)为有限区间或无限区间,f( x) 在(a,b)内可微,

则至少存在一点ξ∈(a,b),使f'( ξ) =0. 现在我们来证明推广的罗尔定理.

证明: ( 1) 设(a,b)为有限区间. 若A为有限值,

容易验证F( x) 在 [a,b]上满足罗尔定理的条件,故ξ∈(a,b),使得F' ( ξ) = f' ( ξ) = 0.

( 2) 若A = + ∞ ,(a,b)为有限区间,由f( x) 在(a,b)内的连续性知,当c > 0时,直线y = c与曲线y = f( x) 至少相交于两点x1,f(x )(1), x2,f(x )(2),即f(x )1= f (x )2= c. 且x1,x2∈(a,b). 不妨设x1< x2,对f( x) 在x1[,x ]2 (a,b)上应用罗尔定理,ξ∈x1(,x )2(a,b),使得f' ( ξ) = 0. 对A =- ∞的情形可类似证明.

( 3) 若A = + ∞ ,(a,b)为无限区间,( ⅰ) 若a = - ∞ ,b= + ∞ ,作变换x = tant. 令g( t) = f( tant) ,

则g( t) 在 -(,π2)满足( 1) 的全部条件.π2

f'( tanα') ·sec2α',sec2α' > 0,

于是取ξ = tanα'∈(- ∞ ,+ ∞),就有f'( ξ) = 0.( ⅱ) 若a为有限,b = + ∞ ,即(a,b) = (a,+ ∞).

则g ( t) 在 (a,m) 满足 ( 1 ) 的全部条 件. 故t0∈

( ⅲ) 若b为有限,a = - ∞ ,即(a,b) = (- ∞ ,b).

0,所以f' ( ξ) = 0.

对A = - ∞的情形可类似证明.

3. 例题

导. 证明: 存在ξ∈(- ∞ ,+ ∞),使得f'( ξ) = 0.

定理得ξ∈(- ∞ ,+ ∞),使f'( ξ) = 0.

例2设f( x) 在 [0,+ ∞)内可微,且满足不等式0≤

由推广的罗尔定理得ξ∈(0,+ ∞),

x

= 0.

1 + x2

由推广的罗尔定理得,存在一点ξ > 0,使得F' ( ξ) = 0.

09命题、定理、证明 篇7

【学习目标】

A级:掌握命题的定义,结构,分类

B级:会将命题改成“如果„„,那么„„”的形式,并由此找出题设和结论部分 C级:会使用反例来说明一个命题是假命题

D级:掌握文字命题证明的步骤并会证明文字命题。【自学导引】自主学习教材P20—P22.【夯实基础】

一、前面我们学过一些对某一件事情进行判断的语句,请举例(多举)。

像这样判断一件事情的语句,叫做命题。判断下列语句是否是命题(1)画线段AB=CD(2)对顶角相等吗?(3)x=1是方程x2

1的根

(4)2>1

(5)不相等的角不是对顶角。

二、命题的结构

命题是由题设和结论两部分组成的,题设是已知事项(已知条件),结论是由已知事项推出的事项。所以命题往往可以改写:

命题常常改写成“如果„„,那么„„”的形式。这样容易找到题设和结论两部分。例如:对顶角相等

可以改为:“如果两个角是对顶角,那么这两个角相等” 题设就是:如果两个角是对顶角,结论就是:那么这两个角相等

将下列命题改成“如果„„,那么„„”的形式(1)两直线平行,同位角相等(2)内错角相等,两直线平行

(3)在同一平面内,垂直于同一条直线的两条直线平行。(4)互为相反数的两个数的绝对值相等。

三、命题的分类:

请说明命题、真命题、假命题、公理和定理五个概念间的关系

思考:如何说明命题“一个锐角与一个钝角的和等于一个平角”是假命题?

四、证明 证明的步骤

(1)根据题意画出图形。(2)写出已知、求证

(3)证明:即写出推理过程。

1、求证:邻补角的角平分线互相垂直

2、求证:两平行线被第三条直线所截,内错角的角平分线互相平行。

3、求证:两平行线被第三条直线所截,同旁内角的角平分线互相垂直。

圆的定理及证明 篇8

姓名:成绩:

1.在四边形ABCD中,O是对角线的交点,下列条件中,不能判定四边形ABCD是平行四边形的是()A.AD∥BC, AD=BCB.AB=DC,AD=BC C.AB∥DC,AD=BC

D.OA=OC,OD=OB

2.如图,在平行四边形ABCD中,AD5,AB3,AE平分∠BAD交BC边于点E,则线段BE,EC的长度分别为()A.2和

3B.3和

2C.4和

1D.1和

4E 3.如图,在平行四边形ABCD中,AC,BD相交于点O.下列结论中正确的个数有()结论:①OAOC,②BADBCD,③ACBD,④BADABC180.

A

D.4个

第3题图

A.1个B.2个C.3个

4.能够判别一个四边形是平行四边形的条件是()

A.一组对角相等B.两条对角线互相垂直且相等C.两组对边分别相等D.一组对边平行 5.下列条件中不能确定四边形ABCD是平行四边形的是()

A.AB=CD,AD∥BCB.AB=CD,AB∥CDC.AB∥CD,AD∥BCD.AB=CD,AD=BC 6.一个四边形的三个内角的度数依次如下选项,其中是平行四边形的是()

A.88°,108°,88°B.88°,104°,108°C.88°,92°,92°D.88°,92°,88° 7.四边形ABCD中,AD∥BC,要判别四边形ABCD是平行四边形,还需满足条件()

A.∠A+∠C=180°B.∠B+∠D=180°C.∠A+∠B=180°D.∠A+∠D=180° 8.以不在一条直线上的三点A、B、C为顶点的平行四边形共有()

A.1个B.2个C.3个D.4个

二、填空题

5.如图,四边形ABCD中,AB∥CD,要使四边形ABCD为平行四边形,则应添加的条件是

(添加一个条件即可)

6.在四边形ABCD中,AB=CD,AD=BC,∠B=50,则∠A=_______,∠D=_________。7.如图,平行四边形ABCD中,AC、BD相交于点O,已知AB=8cm,BC=6cm,△AOB的周长为18cm,那么△AOD的周长为__________。

如图2,BD是ABCD的对角线,AE⊥BD于E,CF⊥BD于F,求证:四边形AECF

为平行四边形.

D

第5题图

C

C

A第7题图

9.如图:平行四边形ABCD的对角线AC、BD相交于点O,MN过点O与AB、CD

相交于M、N,你认为OM、ON有什么关系?为什么?

10.如图,△ABC中,BD平分∠ABC,DE∥BC交AB于点E,EF∥AC交BC于F,试说明

BE=CF。

A

12.如图,D、E是△ABC的边AB和AC中点,延长DE到F,使EF=DE,连结CF.四边形BCFD是平行四边形吗?为什么?

13.如图,□ABCD的对角线AC、BD交于O,EF过点O交AD于E,交BC于F,G是OA的中点,H是OC的中点,四边形EGFH是平行四边形,说明理由

.三、如图3,田村有一口呈四边形的池塘,在它的四个角A、B、C、D处均种有一棵大核桃树.田村准备开挖池塘建养鱼池,想使池塘面积扩大一倍,又想保持核桃树不动,并要求扩建后的池塘成平行四边形的形状,请问田村能否实现这一设想?

圆的定理及证明 篇9

一、“连半径,证垂直”

当直线与圆有明确的公共点时,连接该点和圆心,证明直线垂直于经过这点的半径.

例1如图1,已知AB为⊙O的直径,点D在AB的延长线上,BD = OB,点C在圆上,∠CAB = 30°. 求证:DC是⊙O的切线.

思路要想证明DC是⊙O的切线, 只要我们连接OC,证明∠OCD = 90°即可.

证明:连接OC,BC.

∵AB为⊙O的直径 ,

∴∠ACB = 90°.

∵∠CAB = 30°,

∴ BC =1/ 2AB = OB.

∵BD = OB,

∴BC = BD = OB,

∴∠BOC = ∠BCO,∠BCD = ∠BDC.

∵∠BOC + ∠BCO + ∠BCD + ∠BDC = 180°,

∴∠BCO + ∠BCD = 90°,即∠OCD = 90°.

∴ DC是⊙O的切线.

【评析 】 一定要分清圆的切线的判定定理的条件与结论 ,特别要注意“经过半径的外端”和“垂直于这条半径”这两个条件缺一不可,否则直线就不是圆的切线.

二、“作垂直,证半径”

当不能确定直线与圆有公共点时,则作圆心到直线的垂线段,证明圆心到直线的距离等于半径长.

例2如图2, 已知OC平分∠AOB,D是OC上任意一点,⊙D与OA相切于点E. 求证:OB与⊙D相切.

思路连接DE,过D作DF⊥OB于点F,证明DE = DF即可. 这可由角平分线上的点到角两边的距离相等证得.

证明:连接DE,过点D作DF⊥OB于点F.

∵ ⊙D与OA相切于点E,DF⊥OB于点F,

∴ ∠DEO = 90°,∠DFO = 90°,

∴ ∠DEO = ∠DFO.

∵ OC平分∠AOB,

∴ ∠EOD = ∠FOD.

∵ OD = OD,

∴ △EOD ≌ △FOD(AAS).

∴ DF = DE.

又 ∵ DF⊥OB,

∴ OB与⊙D相切.

【评析 】 一定要防止出现错将圆上的一点当作公共点而连接出半径. 同学们一定要认真体会证明切线时常用的这两种方法,作辅助线时一定要注意表述的正确性.

例3如图3,已知AB为⊙O的直径,过点B作⊙O的切线BC,连接OC,弦AD∥OC. 求证:CD是⊙O的切线.

思路本题中既有圆的切线是已知条件, 又证明另一条直线是圆的切线. 也就是既要注意运用圆的切线的 性质定理, 又要运用圆的切线的判定定理. 欲证明CD是⊙O的切线,只要证明∠ODC=90°即可.

证明:连接OD.

∵ OC∥AD,

∴ ∠1 = ∠3,∠2 = ∠4.

∵ OA = OD,

∴ ∠1 = ∠2.

∴ ∠3 = ∠4.

又 ∵ OB = OD,OC = OC,

∴ △OBC ≌ △ODC(SAS).

∴ ∠OBC = ∠ODC.

∵ BC是⊙O的切线,

∴ ∠OBC = 90°.

∴ ∠ODC = 90°.

∴ DC是⊙O的切线.

【评析 】 本题综合运用了圆的切线的性质与判定定理 ,一定要注意区分这两个定理的题设与结论,注意在什么情况下可以用切线的性质定理,在什么情况下可以用切线的判定定理. 希望同学们通过本题对这两个定理有进一步的认识. 本题若作OD⊥CD,就判断出了CD与⊙O相切,这是不对的,这样做相当于还未探究、判断,就已经得出了结论,显然是错误的.

韦达定理推广的证明 篇10

当Δ=b^2-4ac≥0时,方程 ax^2+bx+c=0(a≠0)有两个实根,设为x1,x2.由求根公式x=(-b±√Δ)/2a,不妨取 x1=(-b-√Δ)/2a,x2=(-b+√Δ)/2a, 则:x1+x2 =(-b-√Δ)/2a+(-b+√Δ)/2a =-2b/2a =-b/a, x1*x2=[(-b-√Δ)/2a][(-b+√Δ)/2a] =[(-b)^2-Δ]/4a^2 =4ac/4a^2 =c/a.综上,x1+x2=-b/a,x1*x2=c/a.烽火TA000DA 2014-11-04

若b^2-4ac=0 则方程有两个相等的实数根

若b^2-4ac<0 则方程没有实数解

韦达定理的推广

韦达定理在更高次方程中也是可以使用的。一般的,对一个一元n次方程∑AiX^i=0

它的根记作X1,X2…,Xn

我们有

∑Xi=(-1)^1*A(n-1)/A(n)

∑XiXj=(-1)^2*A(n-2)/A(n)

ΠXi=(-1)^n*A(0)/A(n)

其中∑是求和,Π是求积。

如果一元二次方程

在复数集中的根是,那么

由代数基本定理可推得:任何一元 n 次方程

在复数集中必有根。因此,该方程的左端可以在复数范围内分解成一次因式的乘积:

其中是该方程的个根。两端比较系数即得韦达定理。

法国数学家韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。历史是有趣的,韦达的16世纪就得出这个定理,证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论性。

(3)以x1,x2为根的一元二次方程(二次项系数为1)是

x2-(x1+x2)x+x1x2=0.

3.二次三项式的因式分解(公式法)

在分解二次三项式ax^2+bx+c的因式时,如果可用公式求出方程ax2+bx+c=0的两个根是X1,x2,那么ax2+bx+c=a(x-x1)(x-x2).

另外这与射影定理是初中必须

射影定理图

掌握的.韦达定理推广的证明

设x1,x2,……,xn是一元n次方程∑AiX^i=0的n个解。

则有:An(x-x1)(x-x2)……(x-xn)=0

所以:An(x-x1)(x-x2)……(x-xn)=∑AiX^i(在打开(x-x1)(x-x2)……(x-xn)时最好用乘法原理)

通过系数对比可得:

A(n-1)=-An(∑xi)

A(n-2)=An(∑xixj)

A0==(-1)^n*An*ΠXi

所以:∑Xi=(-1)^1*A(n-1)/A(n)

∑XiXj=(-1)^2*A(n-2)/A(n)

ΠXi=(-1)^n*A(0)/A(n)

其中∑是求和,Π是求积。

有关韦达定理的经典例题

例1 已知p+q=198,求方程x2+px+q=0的整数根.

(’94祖冲之杯数学邀请赛试题)

解:设方程的两整数根为x1、x2,不妨设x1≤x2.由韦达定理,得

x1+x2=-p,x1x2=q.

于是x1x2-(x1+x2)=p+q=198,即x1x2-x1-x2+1=199.

∴(x1-1)(x2-1)=199.

注意到x1-

1、x2-1均为整数,解得x1=2,x2=200;x1=-198,x2=0.

例2 已知关于x的方程x2-(12-m)x+m-1=0的两个根都是正整数,求m的值.

解:设方程的两个正整数根为x1、x2,且不妨设x1≤x2.由韦达定理得

x1+x2=12-m,x1x2=m-1.

于是x1x2+x1+x2=11,即(x1+1)(x2+1)=12.

∵x1、x2为正整数,解得x1=1,x2=5;x1=2,x2=3.

故有m=6或7.

例3 求实数k,使得方程kx2+(k+1)x+(k-1)=0的根都是整数.

解:若k=0,得x=1,即k=0符合要求.

若k≠0,设二次方程的两个整数根为x1、x2,由韦达定理得

∴x1x2-x1-x2=2,(x1-1)(x2-1)=3.

因为x1-

1、x2-1均为整数,所以

例4 已知二次函数y=-x2+px+q的图像与x轴交于(α,0)、(β,0)两点,且α>1>β,求证:p+q>1.

(’97四川省初中数学竞赛试题)

证明:由题意,可知方程-x2+px+q=0的两根为α、β.由韦达定理得

α+β=p,αβ=-q.

于是p+q=α+β-αβ,=-(αβ-α-β+1)+1

=-(α-1)(β-1)+1>1(因α>1>β).

映射定理

大数定理及其证明[大全] 篇11

大数定理是说,在n个相同(指数学抽象上的相同,即独立和同分布)实验中,如果n足够大,那么结论的均值趋近于理论上的均值。

这其实是说,如果我们从学校抽取n个学生算其平均成绩,那么当学生数n足够大时,算出的平均成绩就趋近于整个学校学生的平均成绩。

当n等于整个学校的学生数时,平均成绩显然等于整个学校的学生成绩,因为自己等于自己是显然的。

那么要证明这个定理,就只需要证明,在n趋近学校学生数这个过程中,平均成绩趋近于学校所有学生的平均成绩。这也是这个定义的意义所在,当我们不能将总体中的样本一一列出来时,可以用足够多的样本的统计量去估计理论值。

用概率语言描述就是,当实验样本趋于总体时,均值的统计量趋于理论量。

当然这里的总体(即学校的所有学生)是有限个的,即当n→全校学生数,如果总体包含无限个,则可将n扩展为趋近于无穷。

柯西中值定理的几种证明 篇12

1. 柯西中值定理的内容

如果函数f (x) 及g (x) 满足:

(1) 在闭区间[a, b]上连续; (2) 在开区间 (a, b) 内可导;

(3) 对任一x∈ (a, b) , g′ (x) ≠0, 那么在 (a, b) 内至少有一点ξ, 使等式成立.

g (b) -g (a) g′ (ξ)

2. 柯西中值定理的证明

柯西中值定理证明方法的探讨与研究历来是一个引人注目的问题.一般常见的证明方法是构造辅助函数再根据罗尔定理加以证明.下面将给出关于这一定理的几种证明方法.

2.1 利用罗尔中值定理证明柯西中值定理

首先给出罗尔中值定理的内容如下:

如果函数f (x) 满足 (i) 在闭区间[a, b]上连续; (ii) 在开区间 (a, b) 内可导; (iii) 如果f (a) =f (b) , 那么在区间 (a, b) 内至少存在一点ξ (a<ξ

由罗尔中值定理知:存在ξ∈ (a, b) , 使得F′ (ξ) =0.

即命题得证.

2.2 利用拉格朗日中值定理证明柯西中值定理

试证用拉格朗日中值定理证明柯西中值定理.

证明由题可设, 任意的x∈ (a, b) , g′ (x) 存在且g′ (x) ≠0, 因此函数g (x) 严格单调, 不妨设g (x) , 在闭区间[a, b]上单调递增.令t=g (x) , 则t是闭区间[a, b]上的单调连续函数.记g (a) =A, g (b) =B.由反函数存在性定理和反函数倒数存在定理知, 存在单调递增且连续的反函数y=g-1 (t) , t∈[A, B]由f (x) 在[a, b]上连续可知, 在连续的复合函数y=f (g-1 (t) ) =h (t) , 根据方程求导公式有:故h′ (x) 在x∈[a, b]上连续, 即t∈[A, B]内存在.从而h (t) 在[A, B]上满足拉格朗日中值定理的条件, 因此至少存在一点t=g (ξ) ∈[A, B], 使得

又因为:

所以结合上面的式子我们可以得出:这样命题就得证.

2.3 用反向分析法证明柯西中值定理

反向分析法是从定理的理论出发, 进行一系列的反向思维分析, 寻找结论与条件之间的有机联系, 探索各种可能的证明途径和有效方法.

证明假设在开区间 (a, b) 内至少存在一点ξ, 使得等式成立, 依据等式的性质, 将这个等式改写为:

将 (1) 式看作某个导函数的值为0, 则就有

由此, 可以做一个辅助函数:通过检验, 可以发现, 函数Q (x) 符合罗尔中值定理的所有条件, 即Q (x) 在闭区间[a, b]上是连续的, 在开区间 (a, b) 内是可导的, 且Q (a) =Q (b) , 因此, 根据罗尔定理, 至少存在一点ξ∈[a, b], 使得Q′ (ξ) =0.所以等式成立, 且满足柯西中值定理的条件, 则柯西中值定理得证.

2.4 利用定积分法证明柯西中值定理

在高等数学教材中, 虽然微分中值定理和积分中值定理是相互独立的, 但它们之间也存在着必然的内在联系.下面我们就利用积分定理来证明.

考查函数φ (x) =[f (b) -f (a) ]f (x) -g (x) [g (b) -g (a) ], 由函数f (x) , g (x) 满足在闭区间[a, b]上连续可导的条件, 并且g (b) ≠g (a) , 以及f′ (x) , g′ (x) 不同时为0的条件.可知函数φ (x) 满足连续可积的条件, 并且φ′ (x) 也满足在闭区间[a, b]上连续, 且的值不受影响, 则可用牛顿-莱布尼茨公式可知又可以由积分中值定理得:

因为φ (b) =φ (a) , 所以φ′ (ξ) (b-a) =0.又因为a≠b, 所以有φ′ (ξ) =0, 这样就可以得到[f (b) -f (a) ]f′ (ξ) -g′ (ξ) [g (b) -g (a) ]=0, 这样我们的柯西中值定理就得证.

圆的定理及证明 篇13

大家都知道,勾股定理不过是余弦定理的一种特例,所以用余弦定理证明勾股定理就很容易;但是长期以来,有一种观点认为,余弦定理不能用来证明勾股定理,原因是余弦定理是用勾股定理证明出来的,然后用余弦定理又来证明勾股定理就是循环论证,说到这里,我就纳闷了,难道证明余弦定理非要直接或者间接的用到勾股定理?NO!简直是谬论,出于兴趣,偶在网上找到了一种证明余弦定理的方法,证明的过程和勾股定理扯不上一点关系。据说是伟大的科学家爱因斯坦在12岁时, 在未学过平面几何的情况下, 基于三角形的相似性, 找到的这一巧妙和简单的证明余弦定理的方法。天才就是天才,汗……

让我们看看天才是怎样一步一步证明余弦定理的:

如图, 在△ABC 中, 过C 点作线段CD, CE 交AB 于D, E, 使∠ACD = ∠B, ∠BCE = ∠A。显然有:

因为 △ACD ∼ △ABC ∼ △CBE, 所以:

AC*AC = AD * AB, ①

BC*BC = BE * AB,②

∠ADC = ∠CEB,△CDE是等腰三角形

AC / AB = CE / BC = CD / BC,即: CD = AC * BC / AB③

而∠CDE = ∠CED = ∠A + ∠B, 由余弦定义知,cos(A + B)= cos ∠CDE =(1/2 * DE)/CD.于是 DE = 2 *(CD * cos∠CDE)= 2 * CD * cos(A + B)。

将③代入得 :

DE = 2AC*BC/AB* cos(A + B)④

根据①②④,便可以推导出:

AC*AC + BC*BC

=(AD + BE)* AB将①②代入

=(AB − DE)* AB

= AB*AB − DE * AB

= AB*AB − 2AC*BC/AB*cos(A+B)* AB将④代入

= AB*AB −2AC·BC cos(A+B)

= AB*AB + 2AC·BC cos∠ACB。

即:AC*AC + BC*BC = AB*AB + 2AC·BC cos∠ACB。⑤

⑤便是众所周知的余弦定理啦

如此便证明了余弦定理。在图中, 若D,E重合到虚线的位置, 则∠ACB 为直角, 余弦定理变为勾股定理,因此,用类似的方法也可以证明勾股定理。由以上看到,证明余弦定理并非一定要涉及到勾股定理。

所以用余弦定理证明勾股定理不存在所谓的循环论证。所以说,请不要认为用余弦定理证明勾股定理的方法是错误的,除非事先说明不允许用余弦定理,否则偶认为用余弦定理证明勾股定理是最简单的一种证明方法,大家都知道 a = 90°时 cos(a)= 0,代入余弦定理便得到勾股定理。

命题与证明之公理定理 篇14

教学要求:了解公理与定理到概念,以及他们之间的内在联系;了解公理与定理都是真命题,它们都是推理论证的依据;掌握教材十条公理和已学过的定理。

重点难点

十条公理和已学过的定理。

一 选择题(每小题5分,共25分)下面命题中:

(1)旋转不改变图形的形状和大小,(2)轴反射不改变图形的形状和大小

(3)连接两点的所有线中,线段最短,(4)三角形的内角和等于180°

属于公理的有()

A1个B2个C3个D4个下面关于公理和定理的联系说法不正确的是()

A 公理和定理都是真命题,B公理就是定理,定理也是公理,C 公理和定理都可以作为推理论证的依据D公理的正确性不需证明,定理的正确性需证明 3推理:如图∵ ∠AOC=∠BOD,∴∠AOC+∠AOB=∠BOD+∠AOB,这个推理的依据是()

A 等量加等量和相等,B等量减等量差相等C 等量代换 D 整体大于部分推理:如图:∵∠A=∠ACD,∠B=∠BCD,(已知)∴AD=CD,CD=DB(等腰三角形的性质)AD=DB()

括号里应填的依据是()

A 旋转不改变图形的大小 B

C等量代换 D 5()

A 两条直线被第三条直线所

截,若同位角相等,则这两条 直线平行

B 线段垂直平分线上的点到线段 4题图 两个端点的距离相等 3题图

C平行四边形的对角线互相平分

D对顶角相等

二 填空题(每小题5分,共25分)人们在长期实践中总结出来的公认的真命题,作为证明的原始依据,称这些真命题为____运用基本定义和公理通过推理证明是真的命题叫_______;

7定理: “直角三角形两直角边的平方和等于斜边的平方”的逆定理是:___________________ _______________________________________;____________________________________________________是定理“两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行”的逆定理如图,Rt△ABC沿直角边BC所在的直线向右平移得到△DEF,下面结论中

(1)△ABC≌△DEF,(2)∠DEF=90°,(3)AC=DF(4)AC∥DF(5)EC=CF 正确的是______________(填序号),你判断的依据是_______________________________________要使平行四边形ABCD成为一个菱形,需要添加一个条件,那么你添加的是 _____________,依据是______

三 解答题(3×12+14=50分)11 仔细观察下面推理,填写每一步用到的公理或定理 如图:在平行四边形ABCD中,CE⊥AB,E

为垂足,如果∠A=125°,求∠BCE

解:∵四边形ABCD是平行四边形(已知)

∴AD∥BC()∵∠A=125°(已知)∴∠B=180°-125°=55°()

∵△BEC是直角三角形(已知)∴∠BCE=90°-55°=35°()如图将△AOB绕点O逆时针旋转90°,得到△A’OB’若A点

11题图

A

D

D

BE

CF

B

C

9题图

10题图

为(a,b),则B点的坐标

(13题图),你用到的依.据是________________________________________________

13如图所示,在直角坐标系xOy中,A(一l,5),B(一3,0),C(一4,3).根据轴反射的定义和性质完成下面问题:(1)在右图中作出△ABC关于y轴的轴对称图形△A′B′C′;(2)写出点C关于y轴的对称点C′的坐标

上一篇:徐州经济型酒店发展的SWOT分析及战略分析下一篇:院系学生党支部党员学习制度