高二物理典型例题解析(精选9篇)
【例1】关于分子电流,下面说法中正确的是
[]
A.分子电流假说最初是由法国学者法拉第提出的B.分子电流假说揭示了磁铁的磁场与电流的磁场具有共同的本质,即磁场都是由电荷的运动形成的C.“分子电流”是专指分子内部存在的环形电流
D.分子电流假说无法解释加热“去磁”现象
解答:正确的是B.
点拨:了解物理学发展历史,不仅能做好这类题,也能帮助我们历史地去看待科学的发展进程.
【例2】回旋加速器的磁场B=1.5T,它的最大回旋半径r=0.50m.当分别加速质子和α粒子时,求:(1)加在两个D形盒间交变电压频率之比.
(2)粒子所获得的最大动能之比.
解析:(1)T=2πm/Bq,故fP/fα=qpmα/qαmP=2.
(2)由r=mv/Bq可得v=Bqr/m,所以被加速粒子的动能Ek=mv2/2=B2q2r2/2m.同一加速器最大半径r和所加磁场相同,故EP/Eα=1.
点拨:比例法是解物理问题的有效方法之一.使用的程序一般是:根据研究对象的运动过程确定相应的物理规律,根据题意确定运动过程中的恒量,分析剩余物理量间的函数关系,建立比例式求解.
【例3】如图16-74所示是显像管电子束运动的示意图.设加速电场两极间的电势差为U,垂直于纸平面的匀强磁场区域的宽度为L,要使电子束从磁场出来在图中所示120°范围内发生偏转(即上、下各偏转60°),磁感应强度B的变化范围如何?(电子电量e、质量m已知)
点拨:这是彩色电视机显像管理想化以后的模型.先确定电子运动的圆心再结合几何知识求解.
参考答案
例3.13mU≥B≥0 22e
【例4】显像管的工作原理是阴极k发射的电子束经高压加速电场(电压力U)加速后,垂直正对圆心进入磁感应强度为B.半径为r的圆形匀强偏转磁场(如图16-75所示),偏转后轰击荧光屏P,荧光屏受激而发光,在极短的时间内完成一幅扫描.若去离子水质量不好,所
2产生的阴极材料中含有少量SO
24,SO4在荧光屏上,将在屏上出现暗斑,称为离子斑.如发生上述情况,试分析说明暗斑集中在荧光屏中央的原
25因.(电子质量为9.1×1031kg,SO2kg)4质量为1.6×10
点拨:电子和SO2
4的比荷不一样,在磁场中偏转程度不一样.
跟踪反馈
1.磁性是物质的一种普遍性质,大到宇宙中的星球,小到电子、质子等微观粒子,几乎都会呈现出磁性.地球就是一个巨大的磁体,在一些生物体内也有微量强磁性物质,研究表明:鸽子正是利用体内所含的微量强磁性物质在地磁场中所受到的作用来帮助辨别方向的.如果在鸽子身上缚一块永磁体材料,且其附近的磁感应强度比地磁场更强,则
[]
A.鸽子仍能辨别方向
B.鸽子更容易辨别方向
C.鸽子会迷失方向
D.不能确定鸽子是否会迷失方向
2.关于分子电流的假说,是安培 []
A.通过精密仪器观察到分子电流而提出的B.根据环形电流的磁场分布与条形磁铁相似提出的C.根据同名磁极相互排斥、异名磁极相互吸取引提出的D.根据电子绕核旋转的理论提出的3.一根软铁棒放在磁铁附近会被磁化,这是因为
[]
A.在外磁场中作用下,软铁棒中的分子电流取向变得大致相同
B.在外磁场中作用下,软铁棒中产生分子电流
C.在外磁场中作用下,软铁棒中的分子电流消失
D.在外磁场中作用下,软铁棒中的分子电流取向变得杂乱无章
4.如图16-76所示,在一个半径R=5.0cm的圆形截面上,分布着磁感强度B=0.50T的匀强磁场.如果在圆面的中心处有一个电子,电子质量m=9.1×10-31kg,电量e=1.6×10-19C.求这个电子要穿离上述磁场区域所具有的动能多大?
例1 (2014·山东威海)已知点p(3-m,m-1)在第二象限,则m的取值范围在数轴上表示正确的是().
【分析】根据第二象限内点的坐标特点,可构造不等式组,从而得出答案.
【点评】本题通过点的坐标所在的象限特点,构造出不等式组,求出不等式组中每一个不等式的解集,再把不等式的解集表示在数轴上确定其结果.
例2 (2014·贵州黔东南)解不等式组并写出它的非负整数解.
【分析】本题涉及解一元一次不等式组.先分别计算出两个不等式的解集,再确定不等式组的解集,最后找出解集范围内的非负整数解.
【点评】求不等式组的特殊解,一般先求出不等式组的解集,再在解集中找出符合要求的特殊解. 不等式组的解集可以利用数轴来确定,也可用口诀来确定“:大大取大,小小取小,大小小大中间找,大大小小是空集. ”
例3 (2014·山东泰安)若不等式组有解,则实数a的取值范围是( ).
A. a<-36 B. a≤-36
C. a>-36 D. a≥-36
【分析】先求出不等式组中每一个不等式的解集,不等式组有解,即两个不等式的解集有公共部分,据此即可列不等式求得a的范围.
【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.
例4 (2014·四川内江)已知实数x、y满足2x-3y=4,并且x≥-1,y<2,现有k=xy,则k的取值范围是 ________.
【分析】先把2x-3y=4变形得到y=(1/3)(2x-4),由y<2,得到(1/3)(2x-4)<2,解得x<5,所以x的取值范围为-1≤x<5,再用x变形k得到k=x-(1/3)(2x-4),然后利用一次函数的性质确定k的范围.
【点评】本题考查了解一元一次不等式以及确定不等式组的解集.
例5 (2014·湖南湘潭)某企业新增了一个化工项目,为了节约资源,保护环境,该企业决定购买A、B两种型号的污水处理设备共8台,具体情况如下表:
经预算,企业最多支出89万元购买设备,且要求月处理污水能力不低于1 380吨.
(1)该企业有几种购买方案?
(2)哪种方案更省钱,说明理由.
【分析】本题考查了用不等式组解决实际问题,解题关键是根据已知条件,寻找不等量关系,建立不等式模型来求解.
(1)设购买污水处理设备A型号x台,则购买B型号(8-x)台,根据企业最多支出89万元购买设备,要求月处理污水能力不低于1 380吨,列出不等式组,然后找出最合适的方案即可.
(2)计算出每一方案的花费,通过比较即可得到答案.
解:设购买污水处理设备A型号x台,则购买B型号(8-x)台,根据题意,得
解这个不等式组,得:2.5≤x≤4.5.
∵x是整数,∴x=3或x=4.
当x=3 时,8-x=5;
当x=4 时,8-x=4.
∴有2种购买方案:第一种是购买3台A型污水处理设备,5台B型污水处理设备;
第二种是购买4台A型污水处理设备,4台B型污水处理设备.
(2)当x=3时,购买资金为12×3+10×5=86(万元),
当x=4时,购买资金为12×4+10×4=88(万元).
因为88>86,
所以为了节约资金,应购污水处理设备A型号3台,B型号5台.
答:购买3台A型污水处理设备,5台B型污水处理设备更省钱.
【点评】列不等式(组)解应用题的关键是根据题意找出不等量关系,再根据相应的关系列出不等式(组). 要注意通常不等关系的给出总是以“至少“”少于“”不超过”“最大”等关键词作为标志. 有时解出不等式(组)后,还要根据实际情况适当取舍,选出符合要求的答案.
例6 (2014·贵州黔东南)某超市计划购进甲、乙两种玩具,已知5件甲种玩具的进价与3件乙种玩具的进价的和为231元,2件甲种玩具的进价与3件乙种玩具的进价的和为141元.
(1)求每件甲种、乙种玩具的进价分别是多少元?
(2)如果购进甲种玩具有优惠,优惠方法是:购进甲种玩具超过20件,超出部分可以享受7折优惠,若购进x(x>0)件甲种玩具需要花费y元,请你求出y与x的函数关系式;
(3)在(2)的条件下,超市决定在甲、乙两种玩具中选购其中一种,且数量超过20件,请你帮助超市判断购进哪种玩具省钱.
【分析】本题综合考查二元一次方程组、一次函数、一元一次不等式的应用.
(1)设每件甲种玩具的进价是x元,每件乙种玩具的进价是y元,根据“5件甲种玩具的进价与3件乙种玩具的进价的和为231元,2件甲种玩具的进价与3件乙种玩具的进价的和为141元”列出方程组解决问题;
(2)分情况讨论,针对甲种玩具数量不大于20件、大于20件,分别列出函数关系式即可;
(3)设购进玩具x件(x>20),分别表示出购买甲种和乙种玩具的费用,建立不等式解决问题.
解:(1)设每件甲种玩具的进价是x元,每件乙种玩具的进价是y元,由题意得
(3)设购进玩具x件(x>20),则乙种玩具花费27x元.
当 27x=21x+180 时,x=30,
即当购进玩具正好30件时,选择购其中任一种皆可;
当 27x>21x+180 时,x>30,
即当购进玩具超过30件时,选择购甲种玩具省钱;
当 27x<21x+180 时,x<30,
即当购进玩具少于30件且大于20件时,选择购乙种玩具省钱.
关键词: 浮力 物理情景 解题方法
1.引言
近几年中考考题中,浮力这一知识点的考查在选择、填空、实验、计算等题型中都有出现,所占比重很大,而且试题的综合性与开放性较强。其中计算题这类题型,设置的物理情境比较新颖别致,很多学生望而却步。事实上,尽管浮力计算题千变万化,但它的“变”仅限于题目结构、设置的物理情境等外在表现形式,其考查的物理规律、解决问题的方法和思路都是学生在日常练习中司空见惯的。若能让学生在这类“多变”的题型中找出“不变”,问题自然就迎刃而解了。本文就两道典型例题进行解析探讨。
2.例题解析
例题1:图A,金属块乙在木块甲上,木块恰好浸没在水中。图B,将金属块放入水中,容器底对金属块的支持力是2N,木块静止时,有2/5的体积露出水面,已知木块的体积是金属块体积的5倍。求金属乙的密度和木块甲的重力(取g=10N/kg)。
(A) (B)
解析:首先要明确研究对象,是独立的物体还是几个物体合在一起的整体。其次对研究对象进行受力分析,通常有几个物体,就写出几个重力,哪个物体浸在水中,就写出哪个物体受的浮力。最后根据平衡条件选择适合的方法列出等式,不要急于将公式展开,而是尽可能简化,再代入数据求解。
图A:把甲、乙做一个整体,甲乙处于平衡状态,甲乙都受到重力,需要注意的是只有甲浸没在水中受到了浮力,受力示意
图1
图2
解析:题中涉及几个物体,首先要明确研究对象分别是木块与甲、木块与乙、木块与丙。受力分析示意图如图3所示:
3.结语
上述两道计算题看似截然不同,其实殊途同归,考查的知识点都是漂浮、悬浮物体的浮力与重力的关系,以及阿基米德原理,不同之处是物理情景的设置,两个物体在水中呈现不同的组合形式。从上述两道题解析中能清楚地看出,不管物体之间的组合形式怎么变,不变的是分析思路和方法。
例1.已知地球的半径为R,球面上A,B两点都在北纬45圈上,它们的球面距离为求B点的位置及A,B两点所在其纬线圈上所对应的劣弧的长度. R,A点在东经30上,3分析:求点B的位置,如图就是求AO1B的大小,只需求出弦AB的长度.对于AB应把它放在OAB中求解,根据球面距离概念计算即可.
解:如图,设球心为O,北纬45圈的中心为O1,R,所以AOB=,33OAB为等边三角形.于是ABR. 由A,B两点的球面距离为由O1AO1BRcos452R,2O1A2O1B2AB2.即AO1B=
. 2又A点在东经30上,故B的位置在东经120,北纬45或者西经60,北纬45.
x2y2[例1]已知双曲线22=1(a>0,b>0)的焦点坐标是F1(-c,0)和F2(c,0),P(x0,y0)
ab是双曲线上的任一点,求证|PF1|=|a+ex0|,|PF2|=|a-ex0|,其中e是双曲线的离心率.x2y2【证明】 双曲线22=1的两焦点F1(-c,0)、F2(c,0),aba2a2相应的准线方程分别是x=-和x=.cc∵双曲线上任一点到焦点的距离与它到相应准线的距离的比等于这个双曲线的离心率.∴PF1x0ac2e,PF2x0ac2e.化简得:|PF1|=|a+ex0|,|PF2|=|a-ex0|.【点评】 |PF1|、|PF2|都是双曲线上的点到其焦点的距离,习惯称作焦半径.|PF1|=|a+ex0|,|PF2|=|a-ex0|称作焦半径公式.[例2]双曲线的中心在坐标原点,离心率为4,一条准线方程是x=程.1,求双曲线的方2ca21【解】 ∵=4,=, c2a∴a=2,c=8,∴b2=82-22=60.x2y2∴双曲线的方程是=1.460【点评】 双曲线的准线总与实轴垂直.x2y2[例3]在双曲线=1上求一点P,使它到左焦点的距离是它到右焦点距离的两169倍.【解】 设P点的坐标为(x,y),F1、F2分别为双曲线的左、右焦点.∵双曲线的准线方程为x=±
16.5∴PF116x5PF216x5.∵|PF1|=2|PF2|, ∴P在双曲线的右支上,2PF2PF248∴,∴x=.16165xx5548x2y2把x=代入方程=1得: 1695y=±3119.5483,±119)
例7.把四个半径都是1的球中的三个放在桌面上,使它两两外切,然后在它们上面放上第四个球,使它与前三个都相切,求第四个球的最高点与桌面的距离.
分析:关键在于能根据要求构造出相应的几何体,由于四个球半径相等,故四个球一定组成正四面体的四个顶点且正四面体的棱长为两球半径之和2.
解:由题意,四球心组成棱长为2的正四面体的四个顶点,则正四面体的高h22(23226). 33
而第四个球的最高点到第四个球的球心距离为求的半径1,且三个球心到桌面的距离都为1,故第四个球的最高点与桌面的距离为226. 3
[例1]
如图1所示,某人骑摩托车在水平道路上行驶,要在A处越过的壕沟,沟面对面比A处低,摩托车的速度至少要有多大?
图1
解析:在竖直方向上,摩托车越过壕沟经历的时间
在水平方向上,摩托车能越过壕沟的速度至少为
2.从分解速度的角度进行解题
对于一个做平抛运动的物体来说,如果知道了某一时刻的速度方向,则我们常常是“从分解速度”的角度来研究问题。
[例2]
如图2甲所示,以9.8m/s的初速度水平抛出的物体,飞行一段时间后,垂直地撞在倾角为的斜面上。可知物体完成这段飞行的时间是()
A.B.C.D.图2
解析:先将物体的末速度分解为水平分速度和竖直分速度(如图2乙所示)。根据平抛运动的分解可知物体水平方向的初速度是始终不变的,所以;又因为与斜面垂直、与水平面垂直,所以与间的夹角等于斜面的倾角。再根据平抛运动的分解可知物体在竖直方向做自由落体运动,那么我们根据就可以求出时间了。则
所以
根据平抛运动竖直方向是自由落体运动可以写出
所以
所以答案为C。
3.从分解位移的角度进行解题
对于一个做平抛运动的物体来说,如果知道了某一时刻的位移方向(如物体从已知倾角的斜面上水平抛出,这个倾角也等于位移与水平方向之间的夹角),则我们可以把位移分解成水平方向和竖直方向,然后运用平抛运动的运动规律来进行研究问题(这种方法,暂且叫做“分解位移法”)
[例3]
在倾角为的斜面上的P点,以水平速度向斜面下方抛出一个物体,落在斜面上的Q点,证明落在Q点物体速度。
解析:设物体由抛出点P运动到斜面上的Q点的位移是,所用时间为,则由“分解位移法”可得,竖直方向上的位移为;水平方向上的位移为。
又根据运动学的规律可得
竖直方向上,水平方向上
则,所以Q点的速度
[例4]
如图3所示,在坡度一定的斜面顶点以大小相同的速度同时水平向左与水平向右抛出两个小球A和B,两侧斜坡的倾角分别为和,小球均落在坡面上,若不计空气阻力,则A和B两小球的运动时间之比为多少?
图3
解析:和都是物体落在斜面上后,位移与水平方向的夹角,则运用分解位移的方法可以得到
所以有
同理
则
4.从竖直方向是自由落体运动的角度出发求解
在研究平抛运动的实验中,由于实验的不规范,有许多同学作出的平抛运动的轨迹,常常不能直接找到运动的起点(这种轨迹,我们暂且叫做“残缺轨迹”),这给求平抛运动的初速度带来了很大的困难。为此,我们可以运用竖直方向是自由落体的规律来进行分析。
[例5]
某一平抛的部分轨迹如图4所示,已知,,求。
图4
解析:A与B、B与C的水平距离相等,且平抛运动的水平方向是匀速直线运动,可设A到B、B到C的时间为T,则
又竖直方向是自由落体运动,则
代入已知量,联立可得
5.从平抛运动的轨迹入手求解问题
[例6]
从高为H的A点平抛一物体,其水平射程为,在A点正上方高为2H的B点,向同一方向平抛另一物体,其水平射程为。两物体轨迹在同一竖直平面内且都恰好从同一屏的顶端擦过,求屏的高度。
图5
解析:本题如果用常规的“分解运动法”比较麻烦,如果我们换一个角度,即从运动轨迹入手进行思考和分析,问题的求解会很容易,如图5所示,物体从A、B两点抛出后的运动的轨迹都是顶点在轴上的抛物线,即可设A、B两方程分别为,则把顶点坐标A(0,H)、B(0,2H)、E(2,0)、F(,0)分别代入可得方程组
这个方程组的解的纵坐标,即为屏的高。
6.灵活分解求解平抛运动的最值问题
[例7]
如图6所示,在倾角为的斜面上以速度水平抛出一小球,该斜面足够长,则从抛出开始计时,经过多长时间小球离开斜面的距离的达到最大,最大距离为多少?
图6
解析:将平抛运动分解为沿斜面向下和垂直斜面向上的分运动,虽然分运动比较复杂一些,但易将物体离斜面距离达到最大的物理本质凸显出来。
取沿斜面向下为轴的正方向,垂直斜面向上为轴的正方向,如图6所示,在轴上,小球做初速度为、加速度为的匀变速直线运动,所以有
①
②
当时,小球在轴上运动到最高点,即小球离开斜面的距离达到最大。
由①式可得小球离开斜面的最大距离
当时,小球在轴上运动到最高点,它所用的时间就是小球从抛出运动到离开斜面最大距离的时间。由②式可得小球运动的时间为
7.利用平抛运动的推论求解
推论1:任意时刻的两个分速度与合速度构成一个矢量直角三角形。
[例8]
从空中同一点沿水平方向同时抛出两个小球,它们的初速度大小分别为和,初速度方向相反,求经过多长时间两小球速度之间的夹角为?
图7
解析:设两小球抛出后经过时间,它们速度之间的夹角为,与竖直方向的夹角分别为和,对两小球分别构建速度矢量直角三角形如图7所示,由图可得和
又因为,所以
由以上各式可得,解得
推论2:任意时刻的两个分位移与合位移构成一个矢量直角三角形
[例9]
宇航员站在一星球表面上的某高度处,沿水平方向抛出一个小球,经过时间,小球落到星球表面,测得抛出点与落地点之间的距离为,若抛出时初速度增大到两倍,则抛出点与落地点之间的距离为。已知两落地点在同一水平面上,该星球的半径为R,万有引力常数为G,求该星球的质量M。
解析:设第一次抛出小球,小球的水平位移为,竖直位移为,如图8所示,构建位移矢量直角三角形有
若抛出时初速度增大到2倍,重新构建位移矢量直角三角形,如图9所示有,由以上两式得
令星球上重力加速度为,由平抛运动的规律得
由万有引力定律与牛顿第二定律得
由以上各式解得
推论3:平抛运动的末速度的反向延长线交平抛运动水平位移的中点。
证明:设平抛运动的初速度为,经时间后的水平位移为,如图10所示,D为末速度反向延长线与水平分位移的交点。根据平抛运动规律有
水平方向位移
竖直方向和
由图可知,与相似,则
联立以上各式可得
该式表明平抛运动的末速度的反向延长线交平抛运动水平位移的中点。
图10
[例10]
如图11所示,与水平面的夹角为的直角三角形木块固定在地面上,有一质点以初速度从三角形木块的顶点上水平抛出,求在运动过程中该质点距斜面的最远距离。
图11
解析:当质点做平抛运动的末速度方向平行于斜面时,质点距斜面的距离最远,此时末速度的方向与初速度方向成角。如图12所示,图中A为末速度的反向延长线与水平位移的交点,AB即为所求的最远距离。根据平抛运动规律有,和
由上述推论3知
据图9中几何关系得
由以上各式解得
即质点距斜面的最远距离为
图12
推论4:平抛运动的物体经时间后,其速度与水平方向的夹角为,位移与水平方向的夹角为,则有
证明:如图13,设平抛运动的初速度为,经时间后到达A点的水平位移为、速度为,如图所示,根据平抛运动规律和几何关系:
在速度三角形中
在位移三角形中
由上面两式可得
一、单项选择题
1.如图所示,把玻璃管的裂口放在火焰上烧熔,它的尖端变钝了。产生这一现象的原因是()
A.玻璃是非晶体,熔化再凝固变成晶体 B.玻璃是晶体,熔化再凝固后变成非晶体 C.熔化的玻璃表面分子间表现为引力使其表面绷紧 D.熔化的玻璃表面分子间表现为斥力使其表面扩张 【答案】C 【解析】玻璃是非晶体,熔化再凝固后仍然是非晶体。故AB错误;细玻璃棒尖端放在火焰上烧溶后尖端变成球形,是表面张力的作用,因为表面张力具有使液体表面绷紧即减小表面积的作用,而体积相同情况下球的表面积最小,故呈球形。故C正确,D错误。故选C。
2.如图是某喷水壶示意图。未喷水时阀门K闭合,压下压杆A可向瓶内储气室充气;多次充气后按下按柄B打开阀门K,水会自动经导管从喷嘴处喷出。储气室内气体可视为理想气体,充气和喷水过程温度保持不变,则()
A.充气过程中,储气室内气体内能增大 B.充气过程中,储气室内气体分子平均动能增大 C.喷水过程中,储气室内气体放热 D.喷水过程中,储气室内气体压强增大 【答案】A 【解析】试题分析:充气过程中,储气室内气体的质量增加,气体的温度不变,故气体的平均动能不变,故气体内能增大,选项A正确,B错误;喷水过程中,气体对外做功,W<0;由于气体温度不变,则根据则根据,可知,储气室内气体吸热,选项C错误;喷水过程中,储气室内气体体积增大,温度不变,可知压强减小,选项D错误;故选A.考点:热力学第一定律;气体的状态方程.3.下列说法中正确的是()A,布朗运动就是液体分子的热运动 B.对一定质量的气体加热,其内能一定增加
C.物体的温度越高,分子热运动越剧烈,分子平均动能越大
D.分子间吸引力随分子间距离的增大而增大,而排斥力随距离的增大而减小 【答案】C 【解析】试题分析:布朗运动不是液体分子的热运动,而是液体分子无规则碰撞所产生的一种花粉颗粒的运动,但是它反映了液体分子是运动的,故选项A错误;对一定质量的气体加热,如果气体对外做功,则其内能不一定增加,选项B错误;物体的温度越高,分子热运动越剧烈,分子平均动能越大,选项C正确;分子间的引力和斥力都随分子间距离的增大而减小,故选项D错误。考点:分子间作用力,温度的含义,布朗运动。
4.甲和乙两个分子,设甲固定不动,乙从无穷远处(此时分子间的分子力可忽略,取分子勢能为0)逐渐向甲靠近直到不能再靠近的过中()A.分子间的引力和斥力都在减小 B.分子间作用力的合力增大 C.分子间的力先做负功后做正功 D.分子势能先减小后增大 【答案】D 【解析】分子间的引力和斥力都随分子之间距离的减小而增大。故A错误;开始时由于两分子之间的距离大于r0,分子力表现为引力,并且随距离的减小,先增大后减小;当分子间距小于r0,分子力为斥力,随分子距离的减小而增大。故B错误;开始时由于两分子之间的距离大于r0,因此分子力为引力当相互靠近时分子力做正功,分子势能减少;当分子间距小于r0,分子力为斥力,相互靠近时,分子力做负功,分子势能增加,故C错误,D正确。故选D。
点睛:该题考查分子之间的作用力以及分子势能随距离的变化,分子力做功对应着分子势能的变化,要正确分析分子之间距离与分子力、分子势能的关系. 5.关于系统动量守恒的条件,下列说法正确的是()A.只要系统内存在摩擦力,系统动量就不可能守恒 B.只要系统所受的合外力为零,系统动量就守恒 C.只要系统中有一个物体具有加遠度,系统动量就不守恒 D.系统中所有物体的加速度为零时,系統的总动量不一定守恒 【答案】B 【解析】若系统内存在着摩擦力,而系统所受的合外力为零,系统的动量仍守恒。故A错误;只要系统所受到合外力为零,则系统的动量一定守恒;故B正确;系统中有一个物体具有加速度时,系统的动量也可能守恒,比如碰撞过程,两个物体的速度都改变,都有加速度,单个物体受外力作用,系统的动量却守恒。故C错误;系统中所有物体的加速度为零时,系统所受的合外力为零,即系统的总动量一定守恒,故D错误;故选B。
6.关于卢瑟福的原子核式结构学说的内容,下列叙述正确的是()A.原子是一个质量分布均匀的球体 B.原子的质量几乎全部集中在原子核内
C.原子的正电荷和负电荷全部集中在一个很小的核内 D.原子核半径的数量级是【答案】B
学_科_网...学_科_网...学_科_网...学_科_网...学_科_网...学_科_网...7.一定质量的气体做等压变化时,其
图象如图所示,若保持气体质量不变,使气体的压强增大后,再
让气体做等压变化,则其等压线与原来相比,下列可能正确的是()
A.等压线与轴之间夹角变大 B.等压线与轴之间夹角不变 C.等压线与轴交点的位置不变 D.等压线与轴交点的位置一定改变 【答案】C 【解析】质量不变,压强增大后,根据
=C可知,的比值将减小;故图象的斜率减小;等压线与t轴夹角变小;故AB错误;由于等压线一定过热力学温度的0点,故一定交与-273℃处;故等压线与t轴交点的位置不变;故C正确,D错误;故选C。
8.在一个密闭隔热的房间里,有一电冰箱正在工作,如果打开电冰箱的门,过一段时间后房间的温度会()A.降低 B.不变 C.升高 D.无法判断 【答案】C 【解析】冰箱只是把冰箱内的热量移到外面,但在绝热的密封舱中,冰箱门打开,整个房间内的热量应该是不变的,由于整个过程中只有电在做功,产生焦耳热,电能转化为内能,根据能量守恒可知室内温度升高了。故选C。
点睛:冰箱、空调等温控设备在调节局部空间温度时,要消耗电能,电能最终转化为内能,使环境温度升高。
二、多项选择题
9.如图所示为一定量的氧气分子在0℃和100℃两种不同情况下的意率分布情况,由图可以判断以下说法中正确的是()
A.温度升高,所有分子的运动速率均变大 B.温度越高,分子的平均地率的小
C.0℃和100℃时氧气分子的速率都呈现“中间多,两头少”的分布特点 D.100℃的氧气与0℃的氧气相比,速率大的分子所占的比例大 【答案】CD 【解析】试题分析:温度升高,气体分子的平均动能增大,平均运动速率增大,但有些分子的运动速率可能减小,从图中可以看出温度高时,速率大的分子所占比例较大,A、B错误,C、D正确. 考点:本题考查了温度是分子平均动能的标志。
点评:解答本题的关键是结合不同温度下的分子速率分布曲线理解温度是分子平均动能的标志的含义,对于物理学中的基本概念和规律要深入理解,理解其实质,不能只是停留在表面上,同时要通过练习加强理解.
10.在高原地区烧水需要使用高压锅,水烧开后,锅内水面上方充满饱和汽,停止加热,高压锅在密封状态下最冷却,在冷却过程中,锅内水蒸气的变化情况为()A.压强变小 B.压强不变 C.一直是饱和汽 D.变为未饱和汽 【答案】AC 【解析】水上方蒸汽的气压叫饱和气压,只与温度有关,只要下面还有水,那就是处于饱和状态,饱和气压随着温度的降低而减小,AC正确,BD错误.
【点睛】考查饱和汽和饱和汽压等概念的理解,关于这两个概念注意:饱和汽压随温度的升高而增大,饱和气压与蒸汽所占的体积无关,与该蒸汽中有无其他气体也无关,不能用气体实验定律分析,这是饱和气体,不是理想气体,对于未饱和汽,气体实验定律近似适用. 11.关于电荷量,下列说法正确的是()A.物体的带电荷量可以是任意值 B.物体的带电荷量只能是某些值 C.物体的带电荷量的最小值为D.一个物体带【答案】BCD 【解析】物体的带电荷量只能是元电荷的整数倍,选项A错误,B正确;物体的带电荷量的最小值为1.6×10-19 C,选项C正确;一个物体带1.6×10-9 C的正电荷,这是它失去了故,选项D正确;故选BCD.个电子的缘
个电子的缘故 的正电荷,这是它失去了12.若以M表示水的摩尔质量,V表示在标准状态下水蒸气的摩尔体积,表示在标准状态下水蒸气的密度,表示阿伏加德罗常数,A.B.、C.分别示每个水分子的质量和体积,下面关系正确的有()
D.【答案】AD 【解析】因为1摩尔水含有阿伏加德罗常数个水分子,则每个水分子的质量 m0=
;标准状态下水蒸气的摩尔体积 V=,则,选项AD正确;,式中的V0′应该是一个水分子运动占据的空间的体积,选项B错误;AD。,式中的V0′应该是一个水分子运动占据的空间的体积,选项C错误;故选点睛:本题要理解阿伏加德罗常数NA是联系宏观与微观的桥梁,抓住它的含义,来理解分子质量和摩尔质量的关系;注意区别水分子的体积和水蒸气中一个水分子运动占据的空间的体积的不同. 13.一定质量理想气体的状态沿如图所示的圆周变化,则该气体体积变化的情况是()
A.沿B.沿C.沿D.沿,逐步减小,先逐步增大后逐步减小,逐步减小,逐步减小
【答案】BC 【解析】由理想气体状态方程PV/T=C可知,V=CT/P;由图象可知,沿a→b,气体压强减小而温度升高,则气体体积变大,故A错误;由图象可知,沿b→c,压强变大温度升高,而P与T的比值先逐渐减小,后逐渐增大,则气体体积先增大后减小,故B正确;沿c→d过程中,P/T逐渐变大,则气体体积逐渐减小,故C正确;沿d→a,P/T先增大后减小,则气体体积先减小后增大,故D错误;故选BC。
点睛:此题由理想气体状态方程求出V的表达式,由图象判断出T/P,即图线各点斜率的倒数如何变化即可判断出气体体积如何变化.
14.一粒珠从静止状态开始自由下落,然后陷入泥潭中,若把其在空中下落的过程称为过程I,进入泥潭起到停止的过称为过程Ⅱ,则()A.过程I中钢珠的动量的该变量等子重力的冲量
B.过程Ⅱ中阻力的冲量大小等于过程I中重力的冲量的大小 C.I、Ⅱ两个过程中合外力的总冲量等于零 D.过程Ⅱ中钢珠的动量的改变量等于零 【答案】AC 【解析】过程Ⅰ中钢珠所受外力只有重力,由动量定理可知,钢珠动量的改变等于重力的冲量,故A正确;过程Ⅱ中,钢珠所受外力有重力和阻力,所以过程Ⅱ中阻力的冲量大小等于过程Ⅰ中重力的冲量大小与过程Ⅱ中重力冲量大小的和,故B错误;在整个过程中,钢珠动量的变化量为零,由动量定理可知,Ⅰ、Ⅱ两个过程中合外力的总冲量等零,故C正确;过程Ⅱ中钢珠所受合外力的冲量不为零,由动量定理可知,过程Ⅱ中钢珠的动量的改变量不等于零,故D错误。所以AC正确,BD错误。15.如图所示为氢原子的能级图,若用能量为的光子去照射大量处于基态的氢原子,则()
A.氢原子能从基态跃迁到n=4的激发态上去 B.有的氢原子能从基态跃迁到的激发态上去
C.氢原子最多能发射3种波长不同的光 D.氢原子最多能发射6种波长不同的光 【答案】AD 【解析】由氢原子的能级图得到,n=4的激发态与基态的能级差为△E=E4-E1=-0.85eV-(-13.6eV)=12.75eV,所以用能量为12.75eV的光子去照射大量处于基态的氢原子,氢原子能从基态跃迁到n=4的激发态上去。故A正确,B错误。氢原子吸收光子的能量跃迁到n=4的激发态后,向低能级跃迁时,任意两个能级之间发生一次跃迁,共发射=6种波长不同的光。故C错误,D错误。故选AD。
点睛:注意当入射光的能量小于氢原子的电离能时,只能吸收能量恰好等于两个能级之差的光子;从高能级向低能级跃迁时最多能辐射的光子种类是.
三、简答题
16.在“用油膜法估测分子的大小”实验中,实验方法及步骤如下: ①内体积油酸中酒精,直至总量达到;
②用注射吸取①中油酸酒精溶液,把它一滴一滴地滴入小量筒中,当滴入75滴时,测得其体积恰好是
③先往边长的浅盘里倒入2cm深的水,然后将痱子粉均匀地撒在水面上;
④用注射器往水面上滴一滴油酸酒精溶液,待油酸在水面上尽可能散开,将事先准备好的带方格的塑料盖板放在浅盘上,并在塑料板上描下油酸膜的形状; ⑤描出的轮廓如图所示,已知每个小正方形的边长积S;
⑥结合以上数据,可计算得到油酸分子的直径D; 根据以上信息,回答下列问题:,数出轮廓内正方形的个数,可以算出油酸膜的面
(1)步骤④中要让油膜尽可能放开的原因是____________;(2)油酸膜的面积S是_____
;
(3)油酸分子的直径D是_______m,(结果保留一位有效数字)【答案】
(1).让油膜在水平面上形成单分子油膜;
(2).【解析】在该实验中,由于油酸薄膜的边缘在水中不易观察和画出,因此浅盘中倒入水后,将痱子粉或石膏粉均匀撒在水面上,以便于操作.
(1)实验中要让油膜尽可能散开,目的是形成单分子油膜层.
(2)由图示可知,由于每格边长为2cm,则每一格就是4cm2,估算油膜面积以超过半格以一格计算,小于4cm2=300cm2.半格就舍去的原则,估算,75格.则油酸薄膜面积S=75×(3)1滴油酸酒精溶液中纯油酸的体积
(之间均可)
(3).油酸分子的直径 点睛:此实验中是将油酸分子在水面上以球模型一个靠一个排列的,且估算油膜面积以超过半格以一格计算,小于半格就舍去的原则.
17.如图所示是一平面上晶体物质微粒的排列情况,图中三条等长线AB、AC、AD上物质微粒的数目均 _____(填“相同”取“不同”),由此得出晶体具有______的性质(填“各向同性”或各向异性”)。
【答案】
(1).不同
(2).各向异性
【解析】三条等长线AB、AC、AD上物质微粒的数目不同,则晶体沿各个方向的导热、导电性能等等都不同,表现为各向异性.
18.如图所示,某种自动洗衣机进水时,洗衣机缸内水位升高,与洗衣缸相连的细管中会封闭一定质量的空气,通过压力传感器感知管中的空气压力,从而控制进水量。当洗衣缸内水位缓慢升高时,设细管内空气温度不变,若密闭的空气可视为理想气体,在上述空气体积变化的过程中,外界对空气做了的功,则空气____(选填“吸收”或“放出”)了____J的热量:当洗完衣服缸内水位迅速降低时,则空气的内能_____(选填“增加”或“减小”)。
【答案】
(1).放出
(2).(3).减小
【解析】由公式E=Q+W知,温度不变则E=0,外界对空气做了0.6J的功,W=0.6J,所以Q=-0.6J,负号说明空气放出了0.6J的热量;缸内水位迅速降低时,则空气的体积膨胀,对外做功,W<0,瞬间时Q=0,所以U<0,即气体内能减小.
点睛:做此类题目时,记住公式U=Q+W,理解各物理量的含义,正负代表什么意思,注意过程很短的过程可认为是绝热过程,即Q=0.
19.一定质量的理想气体,从初始状态A经状态B、C再回到状态A,变化过程如图所示,其中A到B曲线为双曲线中的一支,图中和为已知量。
(1)从状态A到B,气体经历的是_____(填“等温”“等容”或“等压”)过程;(2)从B到C的过程中,气体做功大小为_______;
(3)从A经状态B、C再回到状态A的过程中,气体吸放热情况为______(填“吸热”“放热”或“无吸放热”)。【答案】
(1).等温
(2).(3).放热
=C得知气体的温度【解析】(1)据题知A到B曲线为双曲线,说明p与V成反比,即pV为定值,由不变,即从状态A到B,气体经历的是等温过程.
(2)从B到C的过程中,气体做功大小等于BC线与V轴所围的“面积”大小,故有: W=×(p0+2p0)×V0=p0V0;
(3)气体从A经状态B,再到C气体对外做功,从C到A外界对气体,根据“面积”表示气体做功可知:整个过程气体对外做功小于外界对气体做功,而内能不变,根据热力学第一定律得知气体要放热. 点睛:此题关键是知道p-V图象中的双曲线表示等温线,图线与V轴所围的“面积”等于气体做功的大小,能熟练运用气态方程和热力学第一定律进行研究这类问题.
四、计算论述题
20.空调在制冷过程中,室内空气中的水蒸气接触蒸发器(铜管)液化成水,经排水管排走,空气中水份越来越少,人会感觉干燥。某空调工作一段时间后,排出液化水的体积、摩尔质量留一位有效数字)
(1)该液化水中含有水分子的总数N;(2)一个水分子的直径d。【答案】(1)个(2),阿伏伽德罗常数
。已知水的密度。试求:(结果均保【解析】(1)水的摩尔体积为
=1.8×10-5 m3/mol 水分子数:
≈3×1025个
(2)建立水分子的球模型设其直径为d,每个水分子的体积为,则有
故水分子直径21.如图所示,光滑水平面上小球A、B分别以撞时间为,A、B的质量均为,求:、的速率相向运动,碰撞后B球静止,已知碰
(1)碰撞后A球的速度大小;
(2)碰撞过程A对B平均作用力的大小; 【答案】(1)(2)
【解析】(1)A、B系统动量守恒,设B的运动方向为正方向; 由动量守恒定律得 mvB-mvA=0+mvA′ 解得 vA′=0.8m/s
(2)对B,由动量定理得 −△t=△pB=0-mvB 解得 =8N 点睛:对于碰撞过程,要掌握其基本规律:动量守恒定律。要知道碰撞、打击等过程求作用力要根据动量定理,不能根据牛顿定律,因为物体间相互作用力是变力。22.如图所示,氢原子从n>2的某一能级跃迁到的能级上,辐射出能量为的光子;
(1)跃迁过程中电子动能和原子能量如何变化?
(2)要给基态的氢原子最少提供多少电子伏特的能量,オ能使它辐射出上述能量的光子?(3)在图中画出获得该能量后氢原子可能的跃还情况。【答案】(1)动能增大,原子能量减小(2)(3)跃迁图如图所示:
【解析】(1)氢原子从高能级到n=2能级跃迁时,要辐射光子,则原子的总能量要减小,电子的轨道半径减小,根据可得,则电子的动能变大;
(2)氢原子从n>2的某一能级跃迁到n=2的能级,辐射光子的频率应满足:hν=En-E2=2.55 eV,则En=hν+E2=-0.85 eV 解得:n=4 基态氢原子要跃迁到n=4的能级,应提供的能量为:△E=E4-E1=12.75 eV.(3)如图所示;
23.如图所示,竖直放置的汽缸内壁光滑,横截面积为,活塞的质量为,厚度不计。在A、B,A、B之间的容积为,温度为,两处设有限制装置,使活塞只能在A、B之间运动,B下方汽缸的容积为,外界大气压强现缓慢加热缸内气体,直至327℃。求:
。开始时活塞停在B处,缸内气体的压强为
(1)活塞刚离开B处时气体的温度;(2)缸内气体最后的压强;(3)在图(乙)中画出整个过程中的【答案】(1)(3)如图所示:(2)
析)
一、选择题
1.电磁炉是利用电磁感应现象产生的涡流,使锅体发热从而加热食物.有关电磁炉,下列说法中正确的是()
A.锅体中涡流的强弱与磁场变化的频率有关 B.电磁炉中通入电压足够高的直流电也能正常工作
C.金属或环保绝缘材料制成的锅体都可以利用电磁炉来烹饪食物 D.电磁炉的上表面一般都用金属材料制成,以加快热传递、减少热损耗 【答案】A 【解析】
试题分析:锅体中涡流的强弱与磁场变化的频率有关,故A正确;直流电不能产生变化的磁场,在锅体中不能产生感应电流,电磁炉不能使用直流电,故B错误;锅体只能用铁磁性导体材料,不能使用绝缘材料制作锅体,故C错误;电磁炉的上表面如果用金属材料制成,使用电磁炉时,上表面材料发生电磁感应要损失电能,电磁炉上表面要用绝缘材料制作,故D错误; 故选A.
考点:电磁灶的结构和原理.
点评:本题从常用的电器电磁炉入手,考查其原理和工作情况,电磁炉是利用电流的热效应和磁效应的完美结合体,它的锅具必须含磁性材料,最常见的是不锈钢锅. 2.如下图所示是一交变电流的i-t图象,则该交变电流的有效值为()
A.4A B.C.D.
【答案】D 【解析】 试题分析:根据交流电的定义可得:考点:正弦式电流的最大值和有效值、,解得:,故选D
点评:根据有效值的定义求解.取一个周期时间,将交流与直流分别通过相同的电阻,若产生的热量相同,直流的电流值,即为此交流的有效值
3.如图所示,在匀强磁场中的矩形金属轨道上,有等长的两根金属棒ab和cd,它们以相同的速度匀速运动,则()
A.断开开关S,ab中有感应电流 B.闭合开关S,ab中有感应电流
C.无论断开还是闭合开关S,ab中都有感应电流 D.无论断开还是闭合开关S,ab中都没有感应电流 【答案】B 【解析】
试题分析:两根金属棒ab和cd以相同的速度匀速运动,若断开电键K,两根金属棒与导轨构成的回路中磁通量无变化,则回路中无感应电流,故A、C错误;若闭合电键K,两根金属棒与导轨构成的回路中磁通量发生变化,则回路中有感应电流,故B正确,D错误. 故选B
考点:考查了感应电流产生的条件
点评:当穿过闭合回路的磁通量发生变化,则回路中产生感应电流
4.如图所示,两根平行光滑导轨竖直放置,相距L=0.1 m,处于垂直轨道平面的磁感应强度B=10 T的匀强磁场中.质量m=0.1 kg、电阻为R=2 Ω的金属杆ab接在两根导轨间,在开关S断开时让ab自由下落,ab下落过程中始终保持与导轨垂直并与之接触良好,设导轨足
2够长且电阻不计,取g=10 m/s,当下落h=0.8 m时,开关S闭合.若从开关S闭合时开始计时,则ab下滑的速度v随时间t变化的图象是图中的()
A
B
C
D 【答案】D 【解析】
试题分析:当导体棒自由下落时,由于S的断开,所以电路中无感应电流产生,所以一直做自由落体运动,当S闭合时,此时有一定的速度,受到的安培力为时,导体棒开始匀速下滑,此时,当,所以当S闭合时受到的安培力大于重力,故导体棒做减速运动,由于速度减小,所以安培力在减小,故导体棒做加速度减小的减速运动,当安培力和重力重新平衡时,速度恒定,所以D正确 考点:考查了导体棒切割磁感线运动
点评:关键是根据安培力和重力的大小关系判断导体棒的速度变化规律
5.随着社会经济的发展,人们对能源的需求也日益扩大,节能变得越来越重要.某发电厂采用升压变压器向某一特定用户供电,用户通过降压变压器用电,若发电厂输出电压为U1,输电导线总电阻为R,在某一时段用户需求的电功率为P0,用户的用电器正常工作的电压为U2.在满足用户正常用电的情况下,下列说法正确的是()A.输电线上损耗的功率为B.输电线上损耗的功率为
C.若要减少输电线上损耗的功率可以采用更高的电压输电 D.采用更高的电压输电会降低输电效率 【答案】C 【解析】
试题分析:在计算输电线上的功率损耗时,是输电线上损耗的电压,故AB错误;
高压输电或者减小输电电线电阻是远距离输电过程中减小输电线上电压损耗的两种方法,故C正确,D错误; 考点:考查了远距离输电
点评:在计算远距离输电问题时由于涉及的物理量较多,所以区分各个物理量所代表的含义是关键,6.某电源输出的电流既有交流成分又有直流成分,而我们只需要稳定的直流,下列设计的电路图中,能最大限度使电阻R2获得稳定直流的是()
中的I指的是输电线的电流,U指的【答案】A 【解析】 试题分析:A图中线圈L是阻交流,通直流,电感系数越大,对交流电的阻碍作用越大,所以通过的电流可以为稳定的直流成分,A符合
BC图中电容器是隔直流,所以通过B的电流只有交流电,BC不符合题意 D图中电感线圈的电感系数较小,所以通过故选A
考点:电容器和电感器对交变电流的导通和阻碍作用. 点评:关键是知道电容器在电路中,具有隔直流通交流的作用.
7.如图所示,一理想变压器的原副线圈匝数比为5∶1,正弦交流电源的内阻不计,电阻R1=R2=“4” Ω,R2消耗的功率为P2=“100” W,则()的电流仍有一部分是交流电,不符合题意
A.R1消耗的功率为100 W B.R1、R2中的电流之比为1∶5 C.原线圈两端电压的最大值为100 V D.交流电源的输出功率等于100 W 【答案】B 【解析】 试题分析:因为,故消耗的电功率为100W,所以有,所以消耗的功率为,解得,A错误,B正确; ,根据
可得副线圈两端的电压为:所以原线圈两端最大电压为交流电的输出功率为故选B
考点:考查了变压器的构造和原理 ,根据变压器两端的电压等于原副线圈匝数比可得,C错误; ,D错误
点评:根据电压与匝数程正比,电流与匝数成反比,变压器的输入功率和输出功率相等,逐项分析即可得出结论.
8.如下图,水平桌面上一个面积为S的圆形金属框置于匀强磁场中,线框平面与磁场垂直,磁感应强度B1随时间t的变化关系如图(1)所示.0至1s内磁场方向垂直线框平面向下.圆形金属框与一个水平的平行金属导轨相连接,导轨上放置一根导体棒,导体棒的长为L,电阻为R,且与导轨接触良好,导体棒处于另一匀强磁场中,其磁感应强度恒为B2,方向垂直导轨平面向下,如图(2)所示.若导体棒始终保持静止,则其所 受的静摩擦力f随时间变化的图象是下图中的(设向右为静摩擦力的正方向)哪一个()
【答案】A 【解析】
试题分析:在0到1秒内磁感应强度B1随时间t的均匀增加,则由法拉第电磁感应定律得感应电动势恒定不变,则电流也不变.再由楞次定律可得感应电流方向逆时针,则根据左手定则可得导体棒受到的安培力的方向为向左,大小恒定,所以棒受到的静摩擦力方向为向右,即为正方向.且大小也恒定.
而在1秒到2秒内磁感应强度大小不变,则线圈中没有感应电动势,所以没有感应电流,则也没有安培力.因此棒不受静摩擦力. 故选:A
考点:法拉第电磁感应定律;共点力平衡的条件及其应用.
点评:本题让学生掌握法拉第电磁感应定律来算出感应电动势大小,而楞次定律来确定感应电流的方向,左手定则来判定安培力的方向.
9.两个带有中心轴的金属圆圈a和b,其上都有多根辐向金属条,现用两根金属导线分别将它们的中心轴与对方的边缘接触,整套装置处于垂直纸面向里的匀强磁场中,如右图所示,不计一切摩擦.若圆圈a在外力作用下以恒定的角速度ω逆时针转动时,则圆圈b的转动情况是()
A.逆时针转动 B.顺时针转动
C.圆圈b的角速度等于圆圈a的角速度ω D.圆圈b的角速度小于圆圈a的角速度ω 【答案】BD 【解析】
试题分析:根据右手定则可得,a圈中的电流方向为沿半径向圆心流动,故b圈中的电流方向为从圆心沿半径向外流动,根据左手定则可得b圈中的半径受到向右的安培力,故顺时针转动,A错误,B正确; 由于过程中部分能量转化为热能,故b线圈的转动角速度小于a线圈的转动角速度,C错误,D正确; 故选BD
考点:考查了导体切割磁感线运动
点评:当导体切割磁感线运动时,可用右手判断电流的方向,让磁感线垂直穿过手心,拇指指向为切割磁感线方向,四指指向为电流方向
10.用均匀导线做成的正方形线圈边长为l,正方形的一半放在垂直于纸面向里的匀强磁场中,如图所示,当磁场以的变化率增强时,则()
A.线圈中感应电流方向为acbda B.线圈中产生的电动势
C.线圈中a点电势高于b点电势 D.线圈中a、b两点间的电势差为【答案】AB 【解析】
试题分析:穿过线圈垂直向里的磁通量在增大,根据楞次定律可得线圈中的电流为acbda,A正确;
根据法拉第电磁感应定律可得,线圈中产生的感应电动势为,B正确;
把左半部分线框看成电源,则根据电源内部电流从负极到正极可得a是电源的负极,故a点的电势低于b点的电势,C错误;
把左半部分线框看成电源,其电动势为E,内电阻为,画出等效电路.则ab两点间的电势差即为电源的路端电压,所以故选AB
考点:考查了法拉第电磁感应定律的应用
点评:做本题的关键是知道该电路的等效电路图,左边的线圈可看成电源,根据恒定电流规律分析解题
11.两根相距L的足够长的金属直角导轨如右图所示放置,它们各有一边在同一水平面内,另一边垂直于水平面.质量均为m的金属细杆ab、cd与导轨垂直接触形成闭合回路,杆与导,D错误 轨之间的动摩擦因数均为μ,导轨电阻不计,回路总电阻为2R.整个装置处于磁感应强度大小为B,方向竖直向上的匀强磁场中.当ab杆在平行于水平导轨的拉力F作用下以速度V1沿导轨匀速运动时,cd杆也正好以速度V2向下匀速运动.重力加速度为g.以下说法正确的是()
A.ab杆所受拉力F的大小为μmg+B.cd杆所受摩擦力为零 C.回路中的电流强度为D.μ与V1大小的关系为【答案】AD 【解析】
试题分析:导体切割磁感线时产生沿abdc方向的感应电流,大小为:导体ab受到水平向左的安培力,由受力平衡得:导体棒cd运动时,在竖直方向受到摩擦力和重力平衡,有:联立以上各式解得:故选AD. ,故BC错误,AD正确.
考点:导体切割磁感线时的感应电动势;滑动摩擦力;闭合电路的欧姆定律.
点评:本题涉及电磁感应过程中的复杂受力分析,解决这类问题的关键是,根据法拉第电磁感应定律判断感应电流方向,然后根据安培定则或楞次定律判断安培力方向,进一步根据运动状态列方程求解.
12.某学习小组设计了一种发电装置,如图甲所示,图乙为其俯视图.将8块外形相同的磁铁交错放置组合成一个高h=0.5 m、半径r=0.2 m的圆柱体,其可绕固定轴OO′逆时针(俯视)转动,角速度ω=100 rad/s.设圆柱外侧附近每个磁场区域的磁感应强度大小均为B=0.2 T、方向都垂直于圆柱体侧表面.紧靠圆柱外侧固定一根与其等高、阻值R1=0.5 Ω的细金属杆ab,杆与轴OO′平行.图丙中阻值R=1.5 Ω的电阻与理想电流表A串联后接在杆a、b两端.下列说法正确的是()
A.电流表A的示数约为1.41 A
B.杆ab产生的感应电动势的有效值为2 V C.电阻R消耗的电功率为2 W
D.在圆柱体转过一周的时间内,流过电流表A的总电荷量为零 【答案】BD 【解析】
试题分析:导体切割磁感线产生的感应电动势为 ,又,解得,由于ab杆中产生的感应电动势E的大小保持不变,所以杆ab产生的感应电动势的有效值,则电流表A的示数为
.故A错误,B正确.电阻R消耗的电功率为,故C错误.由楞次定律判断可知,通过电流表的电流方向周期性变化,在一个周期内两种方向通过电流表的电量相等,所以在圆柱体转过一周的时间内,流过电流表A的总电荷量为零.故D正确. 故选BD
考点:法拉第电磁感应定律;电磁感应中的能量转化.
点评:本题有一定的综合性,考查了电磁感应和电路知识,要抓住导体产生的电流大小不变,方向周期性变化的特点,研究电流表的读数.
13.在如图所示电路中。A、B是两个完全相同的灯泡,L是一个自感系数很大、直流电阻为零 的电感线圈,C是电容很大的电容器.当S闭合与断开时,对A、B的发光情况判断正确的是()
A.S闭合时,A立即亮,然后逐渐熄灭 B.S闭合时,B立即亮,然后逐渐熄灭 C.S闭合足够长时间后,B发光,而A不发光
D.S闭合足够长时间后再断开S,B立即熄灭,而A逐渐熄 【答案】AC 【解析】
试题分析:S刚闭合后,电容器C要通过A充电,并且充电电流越来越小,故A亮一下又逐渐变暗,最后A被L短路,所以A最后会熄灭.而L对电流变化有阻碍作用,所以通过B的电流逐渐增大,故B逐渐变亮.A正确,B错误;
S闭合足够长时间后,C中无电流,相当于断路,L相当于短路,所以B很亮,而A不亮.C正确;
S闭合足够长时间后再断开,电容器要对B放电,故B要逐渐熄灭.故D错误. 故选AC
考点:电容器和电感器对交变电流的导通和阻碍作用.
点评:电感器对电流的变化有阻碍作用,当电流增大时,会阻碍电流的增大,当电流减小时,会阻碍其减小.电容器在电路中电流变化时,也会发生充电和放电现象,此时可理解为有电流通过了电容器.
14.电子体重秤的原理图如图中的虚线框中部分所示, 它主要由三部分构成: 踏板、压力传感器R(是一个阻值可随压力大小而变化的电阻器)、显示体重的仪表G(实质是理想电流表).设踏板的质量可忽略不计, 已知理想电流表的量程为3 A, 电源电动势为12 V, 内阻为2 Ω, 电阻R随踏板变化的函数为R=30-0.02F(F和R的单位分别是N和Ω).下列说法正确的是()
A.该秤能测量的最大体重是1400 N B.该秤能测量的最大体重是1300 N
C.该秤零刻度线(即踏板空载时的刻度线)应标在电流表G刻度盘0.375 A处 D.该秤零刻度线(即踏板空载时的刻度线)应标在电流表刻度盘0.400 A处 【答案】AC 【解析】
试题分析:当电路中电流I=3A时,电子秤测量的体重最大.由欧姆定律代入得到电阻
得到F=1400N.故A正确,B错误.踏板空载时,由欧姆定律得
得到,代入,所以该秤零刻度线(即踏板空载时的刻度线)应标在电流表G刻度盘0.375A处.故D错误,C正确. 故选AC
考点:传感器在生产、生活中的应用;闭合电路的欧姆定律. 点评:.关键是对解析式
二、实验题
1.如下图所示是研究电磁感应现象的实验仪器,虚线框内给出了原、副线圈导线的绕法,实验前已查明电流表中电流从左接线柱流入时指针向左偏.(1)用笔画线代替导线在答卷对应的图上连接好实验电路.
(2)若实验中原线圈插入副线圈后,开关S闭合的瞬间,观察到电流表指针向左偏,试在电路连接图中标出电源的正、负极. 的理解.(3)若将原线圈拔出,则拔出时电流表指针向________偏.
【答案】(1)(2)如下图所示
(3)右 【解析】
试题分析:(1)将电源、电键、变阻器、原线圈串联成一个回路,注意滑动变阻器接一上一下两个接线柱,再将电流计与副线圈串联成另一个回路,电路图如图所示.
(2)开关S闭合的瞬间,观察到电流表指针向左偏,说明感应电流由左接线柱流入,由安培定则可知,副线圈中感应电流磁场向上;
开关闭合时,原线圈电流变大,原磁场变强,穿过副线圈的磁通量变大,由楞次定律可知,感应电流磁场与原磁场方向相反,故原磁场方向向下,由安培定则可知,原线圈电流从B流入,A流出,则电源右端是正极,左端是负极,电路图如图所示.
(3)由电路图可知,闭合开关,穿过副线圈的磁场向下,将原线圈拔出,穿过副线圈的磁通量减小,由楞次定律可知,感应电流从电流表右侧流入,则电流表指针向右偏转. 考点:本题考查研究电磁感应现象及验证楞次定律的实验,点评:对于该实验注意两个回路的不同.熟练应用安培定则与楞次定律是正确解题的关键.
三、计算题
1.如图甲所示,一固定的矩形导体线圈水平放置,线圈的两端接一只小灯泡,在线圈所在空间内存在着与线圈平面垂直的均匀分布的磁场.已知线圈的匝数n=100匝,电阻r=1.0Ω,2所围成矩形的面积S=0.040m,小灯泡的电阻R=9.0Ω,磁场的磁感应强度按如图乙所示的规律变化,线圈中产生的感应电动势的瞬时值表达 式为,其中Bm为磁感应强度的最大值,T为磁场变化的周期.不计灯丝电阻随温度的变化,求:
(1)线圈中产生的感应电动势的最大值;(2)小灯泡消耗的电功率;(3)在磁感应强度变化的的时间内,通过小灯泡的电荷量.
-3【答案】(1)8.0V(2)2.88W(3)4.0×10C 【解析】
试题分析:(1)由图象知,线圈中产生的交变电流的周期 T=3.14×10-2s,所以 Em=nBmSω=(2)电流的最大值
2=8.0V(3分)
有效值
小灯泡消耗的电功率P=IR=2.88W(4分)(3)在时间内,电动势的平均值
平均电流通过灯泡的电荷量
=4.0×10C(4分)
-3考点:正弦式电流的最大值和有效值、周期和频率;电功、电功率;交流电的平均值及其应用.
点评:求解交变电流的电功率时要用有效值.在电磁感应中通过导体截面的电量经验公式是,可以在推导的基础上记住.
2.如图所示,在平面内有一扇形金属框,其半径为,边与轴重合,边与轴重合,且为坐标原点,边与边的电阻不计,圆弧上单位长度的电阻为。金属杆MN长度为L,放在金属框上,MN与边紧邻,金属杆ac长度的电阻为R0。磁感应强度为B的匀强磁场与框架平面垂直并充满平面。现对MN杆施加一个外力(图中未画出),使之以C点为轴顺时针匀速转动,角速度为。求:
(1)在MN杆运动过程中,通过杆的电流I与转过的角度间的关系;(2)整个电路消耗电功率的最小值是多少? 【答案】(1)
(2)
【解析】
试题分析:(1)电路中感应电动势
(2分)
设金属杆的电阻为R0(2分。能与其他字母区分即可),则电路总电阻
(2分)
杆中电流I与杆转过的角度θ的关系为
(1分)
(2)由于总电阻,圆弧总长度是定值,所以,当 时,即
时,总电阻R总有最大值。(2分)此时,(2分)
(1分)此时,电路消耗电功率的最小值是考点:考查了导体切割磁感线运动
【高二物理典型例题解析】推荐阅读:
高二物理试题05-23
高二上册物理教案06-27
高二物理期中考试10-11
高二物理课题小结01-12
高二物理焦耳定律02-19
高二物理电流教案05-02
高二年级物理试卷分析07-18
高二物理下册期末试卷09-22
高二物理导学案10-12
高二物理阶段检测二11-26