小学数学教案:圆的认识(通用12篇)
小学六年级上(北师版)数学
教材分析:《圆的的认识》是北师版小学六年级数学上册第一张第一节的内容。圆是一种常见的平面图形,也是最简单的曲线图形。《课程标准》对本课的内容标准是“知道圆的定义;能够准确表述圆的特征;能够准确表述圆的半径、直径特征以及关系;在教师的示范下,通过观察、思考、练习能够准确的画出圆形。”其实在日常生活中学生已经对圆已有了初步的感性认识,教学时,可以让学生回答日常生活中圆形的物体,并通过观察使学生认识圆的形状。再指导学生完成画圆的操作过程,掌握圆的画法。经过讨论使学生认识圆的各部分名称,掌握圆的特征。
学情分析:六年级学生通过以前的学习,应经对平面图形有一定的了解,例如长方形、正方形、三角形等,为本课的学习奠定了基础。但是鉴于以前学习长、正方形等是直线平面图形,而圆是曲线平面图形,估计学生在动手操作、合作探究方面会存在一些困难。而且在小学阶段,学生的空间观念比较薄弱,动手操作能力比较低;学生的学习水平差距较大,小组合作意识不强。
设计思路:根据课标的要求及教材内容和结构,以及对学生学习情况的分析,和与实际生活的联系。本课的设计思路:
1、数学来源于生活,课件中出示的几种生活中的图形都有圆,很自然的就为学生创设了问题情境。
2、强化操作,在操作中探究,画一画、剪一剪、折一折,让学生在操作中感知圆的特征。
3、运用课件,用新颖的教学手段加深学生的印象,激发学生的求知欲,发挥动画的效果,让学生建立深刻的印象。
4、将知识还原于生活,运用于生活,不断激发学生的思维,促进学生思维活动的发展,培养创新意识,又让学生感受到数学起源于生活,又能应用于生活。
5、倡导合作意识的形成。合作学习是新课程改革提倡的学习方式三个维度(自主性、研究性、合作性)之一。合作学习将个人的竞争转化为小组的竞争,有助于朋友学生合作的精神和竞争的意识,有助于因材施教,弥补一个教师难以面对有差异的众多学生的不足,从而真正实现“让每个学生都得到发展”的目标。在整节课的教学中,教师注重与学生的合作与交流,让他们在合作与交流中获取知识,培养了合作意识。
6、教师总结,进一步强化所学的知识。教学目标:
一、识记与理解:①认识圆各部分的名称,会用字母表示圆心、直径、半径。②知道圆的位置是由圆心决定,圆的大小由圆的半径决定。③理解并掌握圆的简单的特征,如在同一个圆里,有无数条半径,所有的半径的长度都相等。
二、技能目标:①会用圆规画圆。②根据圆的半径(直径),能正确地求出它的直径(半径)。③能用圆的简单特征解释为什么车轮都做成圆的,车轴应安装在哪里的现象。
三、情感、态度、价值观目标:①从直线型平面图形过渡到曲线型平面图形,发展学生的空间观念。②通过学生自己动手操作探究圆的简单特征,激发学生学习的兴趣,通过折、量、比、算等方式让学生体会合作学习的乐趣。③通过生活中圆的物体的多样和圆的知识用途多样,让学生数学知道与生活的密切联系。教学重点和难点:
一、重点:圆的各部分名称及其各部分之间的关系。
二、难点:用圆规按要求画圆。课前准备:
一、教师课前准备:制作多媒体课件、教学圆规、圆若干、长方形纸、圆规、直尺、三角板、剪刀、彩笔。
二、学生课前准备:课前预习,带圆规、圆形纸片(家长做的)、搜集生活中的圆形器物。
教学资源:
课本,教学课件(相关图片、文字、视频资料等)、各种形状的纸片、圆形器物等。教学方法: 讲述法、讨论法、探究法、活动法、实践法等。教学过程: 导入新课:
师:同学们,童话是我们学校的特色。老师今天就用童话故事介绍一位数学王国中的朋友,给大家认识。他是谁呢?他是我们下象棋的棋子,因为每个象棋的棋子都是圆溜溜的,所以他的名字叫圆圆。圆圆觉得自己的本领可大了。你瞧世界上到处都是他的兄弟,(多媒体出示硬币、钟、光盘等实物图。)硬币、光盘、钟面都是圆形的物体。)师:看了这么多圆形图片,同学们再想想我们身边还有那些物体表面是圆形的啊?
生:各种回答——注意纠正学生的语言(篮球不是圆,它是球,不过它的切面是圆形的。)师:课件中展示生活中各种各样的圆,然后在屏幕上显示出课题——《题圆的认识》。学习新课:
一、找到认识圆心及表示方法。
师:同学们,我们已经初步认识了圆,在自然现象中也有很多圆。如:光环、明月、平静的水面上漾起的涟漪等(多媒体出示)。这些都很美。
师:现在请同学们比较一下,以前学习过的平面直线图形(教师把之前准备好的长方形、三角形等逐一出示。)与老师手中的圆有什么区别呢? 生:圆是由曲线围成的(意思相近即可)
师:请同学拿出自己准备好的圆形纸片,像老师这样对叠(做示范),使两边完全重合,然后打开,用铅笔把折痕画下来,这样反复几次。问:同学们发现了什么呀?(引导学生发现这些折痕都相交于一点)生:都交于一点。
师:继续引导学生发现这一点位于圆的中心。生:学生发现了。
师:同学们很能干,这些折痕都相交于圆内一点,并且这一点在圆的中心。所以我们给他取个名字好不好? 生:好!
师:这一点既然在圆的中心我们叫他“圆心”吧?有了中文名字我们随便也把他的英语名字取了吧?叫什么呢?同学们想想?(提醒用一个字母吧)生;各种回答。
师:同学们的名字都很好,不过老师觉得他是圆的中心,我们就用个圆形的字母勒表示好不好啊? 生:好!
师:所以老师给他取的英文名字是“O”。大家记住了没有?圆中心的一点中文和英文各用什么表示的。以后知道怎么叫了吧?(课件上展示圆心及表示方法)接下来大家交流一下吧(2分钟)
生:知道!(并把圆心的表示方法一起回答了一遍)
二、半径与直径。
师:请同学们前后四个人一个小组,拿出刻度尺量一量,圆周上任意一点到圆心O的距离,并记录下来。多测量几个不同的位置,然后思考一下看有什么发现?比一比谁最快啊?(3分钟)
生:各种回答。(老师纠正并引导学生得:圆心到圆上任意一点都相等)师:(课件展示:连接圆上一点到圆心)同学们很棒哟!这条线段呢,他也有中文和英文名字,中文叫“圆的半径”简称“半径”,英文名字用小写的“r”表示。接着请同学在你们的纸片圆上画画,看看在同一个圆中可以画多少条半径啊?再量量半径的长度又会发现什么呢? 生:可以画无数条并所有半径长度都相等!
师:强调是在同一圆内。并继续让学生观察测量贯穿整个圆的折痕的长度并记录,看看发现了什么?
生:各种回答。(老师纠正并引导学生发现这些折痕都经过圆心且两端都在圆周上)
师:(课件展示:画一条直径)同学们看黑板,这条线段我们称他是“直径”,用小写字母“d”表示。同样方法,发现同一圆内有无数条直径,每条直径的长度都相等。(三分钟让学生记一下)
师:各小组的同学看看你们记录的数据,讨论一下直径与半径有什么关系没有啊? 生:直径是半径的两倍。
师:嗯,很对!那么我们用数学等式怎么来书写呢?现在同学各写各的,老师下来检查。(边走边看)
生:写出了很多等式,但都不没有写完。
师:(课件展示:直径=半径2,半径=直径÷2,d=2r,r=d/2)这就是直径与半径的关系,大多数同学都发现了,不过没写完整。好,请同学写错的马上改正,没写完的,补充。写好了把前边学习的好好看一下(五分钟)
师:好了同学,大家一起来复习一下。我们知道了圆的中心有一点,叫什么呀? 生:圆心。
师:圆心到圆周上人一点距离? 生:相等。
用这种问法接着问,学生回答。
三、圆规和圆的画法。
1、认识圆规,了解各部分的名称及作用。
2、试画一个圆,并让学生跟着画!
3、交流画法。
4、让学生将自己所画的圆剪下,备用。课堂小结:
通过这节课的学习使学生认识圆,知道圆的各部分名称以及表示方,使学生掌握圆的特征,理解和掌握在同一个圆里半径和直径的关系,初步学会用圆规画圆,培养学生的作图能力.培养了学生观察、分析、抽象、概括等思维能力。
布置作业:课后练习题和随堂作业
一、加强实例教学
数学的抽象性和高度逻辑性使学生对数学的学习缺少兴趣.而抽象的数学概念也不利于学生学习吸收.从生活出发, 加强实例的教学, 使数学课堂更贴近生活从而学生感受到数学知识与生活的紧密联系, 激起其学习兴趣以达到加强数学教学的效果.
圆出现于我们生活的方方面面, 在圆的认识的课堂教学中, 教师可以利用生活的实例来引出课程.如教师可以先播放一段关于汽车行驶的动画, 然后提问学生, 为什么车轮要用圆形的呢?为什么正方形或者长方形不使用在车轮中呢?教师利用这类贴近生活的问题引起学生的思考.这时, 学生会对车轮进行较为仔细的观察提高学生的观察能力.通过仔细观察后, 教师对圆各部分名称进行讲解.如圆的半径、直径、圆心的位置和名称.学生通过仔细观察后再获得知识可以加强其学习的记忆能力.同时, 教师还应该提出问题, 为什么圆形具有这样的特殊性呢.让学生抱着思考的态度继续学习.
在数学教学中, 加强学生对知识应用能力的培养, 加大实例教学的比例, 能使学生不仅熟悉课本的理论知识还能熟练的使用所学知识对生活中所出现的问题进行解释.加强数学教学和生活应用的联系, 肯定学生的学习成果, 很大程度的提高学生的自信和学习热情.
如教师在对圆的周长进行讲解时教师可以先出题目:已知小红有部自行车车轮的直径为66厘米, 如果每分钟转100周, 从家里到学校的距离为2千米, 问小红从家里到学校需要几分钟?这样的问题一下就让枯燥的圆的周长的计算变得有趣而有探究性了.学生会联系到自己平时骑自行车上学的情景, 了解圆的周长的学习对日常生活的帮助, 从而提高学生对数学的学习热情.接下来, 教师对学生进行思维引导:自行车转一圈是多少厘米呢?转100圈后自行车走了多少米呢?适当的思维引导可以帮助学生形成有序的解题思维, 作用于学生的日后的做题.
二、加强学生操作能力
在圆的认识这一课程中, 学生利用圆规和直尺进行圆的绘画这一操作是十分重要的.通过动手操作, 学生感受到圆的特殊性:圆有无数条半径、半径都相等、直径都相等.通过学生自主操作和归纳得出的结论能更好的被学生记住.
π是圆的认识这一课堂教学中的难点.学生在之前的学习和生活中没有接触过π的概念, 不理解在圆的面积和周长的计算中为什么会出现π.因此教师在教学中已经先让学生对“π”有个简单的理解.
在圆的周长这一课程的教学之前, 教师可以让学生先准备一段棉线.在课堂上, 教师先让学生画一个直径为2厘米的圆.通过棉线的度量, 学生能够知道圆的周长.这时, 教师可以提出问题:圆的周长的和直径有什么关系呢?学生的探究能力被激起.经过计算学生会发现, 直径为4厘米的圆的周长与半径相除会等于3.141 5这样一个无限不循环小数.这时, 教师可以引导学生画一个半径为3厘米的圆, 画一个半径为4厘米的圆, 通过同样的方法对圆的周长与直径之间的关系进行探究.经过多次的计算和探究, 学生会发现圆的周长和直径之间一直存在一个相同的无限不循环小数, 这时候, 教师就可以用祖冲之对圆周率计算的故事对教学进行引入, 加深学生对圆周率的理解.
动手实践可以实现数学模型情景化, 使抽象的数学知识变得具体, 学生能够通过动手操作掌握其知识.
三、加强知识正迁移作用
圆的认识的这一课程的学习是为了给学生日后的学习打下基础.学生在学习长方形和正方形时所获得的经验能对圆的学习提供帮助, 使学生能够通过自我探究来获得知识.心理研究表明, 学生的学习知识有正迁移和负迁移的作用, 正迁移是指学生之前所学的知识能够对后来学的知识进行推动, 而负迁移则是指学生之前所学的知识对后来学的知识造成影响使学生思维混乱.教师要对学生进行引导, 使学生能够对圆进行探究, 加强学生的归纳能力, 通过对比引导减少学生之间负迁移所带来的感染.
四、运用多媒体技术
多媒体辅助教学是现在被广泛应用于教学中的一项教学技术, 多媒体辅助教学技术的应用很好的打破了传统课堂单一枯燥的教学方式, 图片动画和几何画板的应用使课堂变得生活有趣.平面几何是数学教学中抽象性较高的一个模板, 多媒体技术在平面几何中的应用能够很好的化抽象为具体.同时, 教师可以通过几何画板来进行画圆而不需要使用传统的笨拙的画图工具来画图, 可以很好的节省宝贵的课堂时间.
如在讲圆的面积时, 教师先展示以下题目:用一根长3厘米的绳子把一头羊拴在草地中间, 问, 羊吃草的面积有多大?学生面对这个问题时可能无法产生相应的数学模型, 这时候, 教师可以利用多媒体辅助教学找到羊被拴在一棵树上的插图.这样就可以使学生清楚的明白这是一个求圆的面积的题目, 从而轻易的求出答案.
同时, 多媒体教学的辅助能够使课堂教学变得生动有趣, 有趣的动画和音频能够很好的吸引住学生的视线, 使学生的注意力集中在课堂教学中.
结束语:圆的认识包括了圆的特征的认识, 圆的半径与直径的关系、半径与面积、周长的关系等, 是一个难度较高的课程.教师在进行圆的认识的课程教学时, 应从学生的角度出发, 从学生如何吸收知识来对课堂进行设置.实例教学能够加强学生的知识应用能力, 使学生感受到数学知识与生活的密切联系, 同时, 学生能够通过在生活中的应用从而获得自信提升学生对数学的学习热情.在平面几何的学习中, 归纳能力和探究能力的培养是十分重要的, 把学生学习画圆这一操作列为教学重点能够加强学生对圆的理解和体会, 在动手绘画中学生的归纳探究能力都能得到很大的提高.另外, 教师还应该注重教学手段的改革, 多媒体技术的应用能够提高课堂教学的质量.圆的认识是小学数学教学中的难点, 教师应该对如何教好圆进行深入的探究, 以此不断提高自我教学水平, 从而培养出更为优秀的学生.
摘要:圆的认识是小学数学平面几何教学中唯一的曲线图形.通过实例教学引起学生的学习兴趣, 使学生感受数学知识与生活的紧密联系.通过引导学生操作、测量使学生认识圆的各部分名称, 并引导学生主动对圆进行探究, 提高学生的归纳能力, 加强圆的认识这一课程的教学效果.
1、遵循教师主导、学生主体和以实验、探究为主线的理念,采用设问-思考-小组讨论-动手验证-抽象概括的学习方法。
2、实践法。
3、小组合作讨论法。上完这节课,我感受比较深的有以下三点:
1、目标是教学的灵魂。
心有多大,舞台就有多大。我在制定这节课的教学目标时,对教材进行反复阅读,查阅了大量资料,充分考虑了小学六年级学生的心理特征和认知能力,确立教学目标。
2、体验是成功的基石。
对于圆的特征的认识,我打破了传统的教学模式,而是让学生在课前自学的研究中自己建构知识,通过学生的自主探索、想象验证、合作交流等活动,引领学生成为发现者、研究者,在对话交流中使知识、能力、方法、情感等以自然建构与生成。
3、数学文化应多方面渗透。
在探究圆的本质特征时结合中国古代关于圆的记载,从历史的视野上去丰富学生原有的认知结构;用数学的眼光解释生活中圆的应用,努力使圆所具有的文化特性浸润于学生的心间,让学生的数学成长与美丽同行。
存在不足:
圆这种平面图形,它是由()围成的。、举例说明:生活中哪些地方或哪些物体上有圆形?请写下来。
二、学海探秘
任务
(一):认识圆各部分名称及圆的特征、按课本56页例2操作圆形纸片,自学本页最后一段,完成下列题目:
圆中心的这一点,叫做(),用字母()表示;连接()和(()表示;通过()并且()的线段叫做直径,用字母()表示。、在圆形纸片上描出圆心、半径、直径并用字母表示出来。、量一量,比一比,做一做:(利用圆形纸片学习)
①在同一个圆内,有多少条半径,这些半径有什么特点?直径呢?
②在同一个圆内,直径和半径的长度有什么关系?、我会填:
① r=3cm②d=9dm③r=2.4m④d=3.6cm
d=_____r=_____d=_____r=_____、我是小裁判。
①所有的直径都相等,所有的半径都相等。()
②圆的直径是半径的2倍。()
③圆的半径增加3cm,它的直径也增加3cm。()
④半径2cm的圆比直径3cm的圆小。()
任务
(二):用圆规画圆、画一个半径2cm的圆,并说说你是怎样画的?、想一想:
圆的位置是由()决定的,圆的大小是由()决定的。、画两个相同的圆,要具备什么条件?
三、团结合作
小组讨论自学中存在的问题,组内互帮活动。(不能解决的用笔划出来。)
四、大显身手、班内交流展示。、抢答游戏。
(老师宣布规则,各组派代表来抢答)
【课前慎思】
《圆的认识》一直是小学高年级数学的教学内容,几乎所有小学数学教学领域的名师大家都用过这节课来“吟诗作画”,各领风骚;后生新秀们更是频频用这节课来“小试牛刀”,异彩纷呈。
我在欣赏品味之余,发现我们对于“圆的认识”这节课教学内容的处理,主要存在以下三个问题:第一,注重组织学生通过折叠、测量、比对等操作活动来发现圆的特征,不重视通过推理、想象、思辨等思维活动来概括出圆的特征;第二,注重让学生学会“用圆规画圆”,不重视让学生思考“为什么用圆规可以画出圆”;第三,注重数学史料的文化点缀,不重视数学史料文化功能的挖掘。
我思考——“圆的认识”这节课究竟要讲什么?
我思考——“特征”是指“一事物区别于他事物的特别显著的征象、标志。”(《辞海》)那么,圆的特征究竟是什么?曲线围成、没有角、半径是直径的一半,是不是特征?“一中同长”的特征是不是需要下发空白研究报告,组织学生小组合作研究?这是不是为了“研究报告”而组织研究?这是不是教学上的形式主义? 我思考——半径和直径是不是应该“浓墨重彩”去渲染? “圆”的概念都没有给出,是否需要咬文嚼字地概括出“半径”和“直径”的概念?揭示两者概念后,让学生从一个圆内各个不同的线段中挑出“半径”和“直径”,有没有哪位老师见过学生有错?学生都不会有错的活动,要不要组织?这样的活动是不是教者自作多情、自娱自
乐?
我思考——半径和直径的关系是不是教学难点,要不要研究,是否“顾名思义”就可以理解?得出关系后的填表练习,究竟是练习的两者关系,还是练习的乘以2和除以2的口算?我们是不是总是好为人师,以为我们不讲学生就不会?是的,熟能生巧,但熟还能生厌,那熟是不是还能生笨呢?现在的学生在课堂上是不是很少“不懂”装“懂”,而更多的是不是精明地“懂”装“不懂”?
我思考——量出半径都相等,就科学、深刻吗?在一个圆内,半径和直径真的画不完吗?画不完就能说明“半径有无数条”吗? “半径都相等”和“直径都相等”要不要加上前提条件“在同一个圆中或等圆中”?我们说“正常人的两条腿是一样长的”,怎么不加上前提条件“在同一个人身上”?以后再说“正方形的四条边都相等”,还要不要加上“在同一个正方形中”呢?数学上的严谨就是这样的吗?要加上前提条件“在同一个圆中或等圆中”,这是不是教学内容上的形式主义? 我思考——圆的画法是应该教,以促进学生更好地学,但应该一、二、三地教吗?是不是在学生容易疏忽的两个地方“手拿住哪里”、“两脚之间的距离是直径还是半径”点破就可以了?学生抑或老师画出的不圆,是否就该随手擦掉?那些“不圆”的作品,是不是课堂中的生命体?是否应该珍惜?
我思考—— 我们的小学数学教学是否应该不仅关注“是什么”和“怎样做”,还应该引导学生去探究“为什么”和“为什么这样做”?
这样是不是才凸显出“数学是思维的体操”这一学科特色?是不是应该带领学生经历从现象到本质的探究过程,促使学生养成研究问题的良好意识?“问题是数学的心脏”,我们数学老师是否可以给学生一个问题模式,让学生“知道怎样思维”,让学生掌握作为一种“非言语程序性知识”的思维?
我思考——“圆”的意蕴实在是丰富,借着这么“圆满”的素材,我们是否可以在培养学生批判思维和突破常规的创新思维上做些文章,引导学生思考“一定这样吗”?柳暗花明、曲径通幽、殊途同归的心理体验,是否更有利于学生的可持续发展?
我思考……
经过一段时间的慎思明辨,我认识到“圆”这一节课应该讲的有价值的东西实在是太多,有舍才有得,一课一得足矣!【教学目标】
1.认识圆的特征,初步学会画圆,发展空间观念。
2.在认识圆的过程中,感受研究的一般方法,享受思维的乐趣。【教学过程】 师生问好。
一、情景中创造“圆” 师:同学们请看题目:
“小明参加奥林匹克寻宝活动,得到 一张纸条,纸条上面写的是:宝物距离左脚三米。”宝物可能在哪呢?
生思考
师:有想法,你的桌子上有张白纸,上面有个红点,你们找到了吗?
生:找到了
师:那个红点代表的是小明的左脚,如果用纸上的1厘米代表实际距离的1米的话,能 把你的想法在纸上表示出来吗?想,开始。
学生动手实践,师巡视。
师:真佩服,真佩服,我们西安的小朋友真棒!会动脑子。除了你表示的那个点,还有其他可能吗?
生思考。
师:好,很多同学都想好了,我们来看屏幕。红点代表小明的左脚,[课件演示:在红点右侧找出一距离红点3米的点]刚才我看到,很多同学都找到了这个点,找到的同学举手。
生纷纷举手。
师:除了这一点,刚才我看到,还有的同学找到了这一点。[课件演示:在红点左侧找出一个距离红点3米的点]还有这一点,这一点[课件演示:分别在红点上下的距离为3米的点]我看有的同学还画了这些斜点,是吗?还有其他的可能吗?[课件演示:越来越密,最后连成了圆] 师:想到圆的举手。哇,真佩服,刚才我看有的同学都画出圆了,是吗?看屏幕,这是什么?认识吗?
生:认识,圆
二、追问中初识“圆”
师:那宝物可能在哪里呢?
生:在圆的范围内,在圆的这条线上。
师:你刚才的说法很有意思,先说“在圆的范围内”,后来改成“在圆的这条线上”。如果在范围内,距离不够3米,如果在圆上,距离够3米。那你们怎么告诉小明呢?如果宝物在圆上,怎么表达告诉小明呢?
生:可以这样对小明说:“以你的左脚为圆心,画一个半径为3米的圆。在这个圆的周厂上取任意一点,这个地方也许就是埋宝物的地方”。
师:同意吗?真厉害。刚才她说到两个词,一个是以左脚为“圆心”还有一个是半径多少?[板书:圆心,半径] 生:3米
师:就用上这两个词,就很准确地表达出了圆的位置,对吧。如果只说以左脚为圆心,不说半径3米,告诉小明,宝物啊就在 以你左脚为圆心的圆上。行不行?
生:不行 师:为什么不行?
生:如果只告诉左脚是圆心的话,那圆可以无限延伸。就没法掌握圆的周长是多少。
师:那个圆可以无限延伸。我理解他的意思了,你理解了吗? 生:理解了。
师:也就是说圆的半径没定,圆的大小没定。对不对。
生:对
师:这样的话,可以画多少个圆,可以无限延伸,对不对。那如果不说“以左脚为圆心”行不行?
生:不行,那样圆的位置就可以无限延伸。
师:除了说“以左脚为圆心,半径为3米的圆上”还可以怎么说?生活中听说过吗?
生:也可以说直径是6米。师:同意吗? 生:同意。
师:可以说:以左脚为圆心,直径为——” 生:6米
师:对。这个“直径:也能表达圆的大小。[板书:直径] 师:为什么 宝物可能所在的位置会是一个圆呢? 生:因为在一个圆内,所有的 半径都相等。
师:哦,他说了这个。什么 宝物可能所在的位置会是一个圆呢? 生:因为以他的左脚为圆心,他可以随便走一圈,就变成圆了。师:哦,可以随便走一圈。方向没有定,是吧。这也是另外一个角度看问题。刚才两个同学说的都很有道理,不过要很好的说明这个问题我们可以用”圆的特点“来说明。你觉得圆有特点呢?
生:我觉得圆有无数条半径,无数条直径。生:圆心到圆上任意一点的距离都是相等的。
师:我们说图形的特点的时候一般要和以前学过的图形作比较。
一句话,有比较才有结论。[课件:三角形,正方形等]以前我们学过三角形,正方形等。我们以前说图形的时候往往从“边”和“角”两个角度来说明,那你看,从 边和角的角度来看,圆有什么特点呢?
生:它既没有棱也没有角。
师:同意吗?同意的请点点头,她说圆没有棱也没有角,对吗? 生:对
师:没有棱是什么意思?
生:没有棱是说它没有边,它不象正方形有4条边。师追问:那它是没有边吗? 生:不是,有边。师:有边,几条边? 生:1条。
师:那你们说圆的边和我们以前学过的图形有什么不同? 生:以前学过的图形的边是直线,而圆的边是曲线构成的。师:同意? 生:同意。
师:看来我们从角来看,圆是没有角的。从边上来看,圆有没有边?
生:有!师:有,几条边? 生:一条边。
师:这是圆很特别的地方。其他图形,最起码有3条边,而圆呢?
只有一条边。并且它的边怎样?
生:是曲线的。
师:是曲线的。其他的是直线或者说是线段围成的。
师:圆,我们从边和角来看是这样的特点。我们的祖先墨子说:圆一中同长也[板书]知道这句话什么意思吗?一中指什么?
生:圆心
师:同长,什么同长? 生:半径
师:半径同长,有人说直径也同长。同意古人说的话吗? 生:同意。
师:“圆,一中同长也”。难道说正三角形,正四边形正五边行不是“一中同长”吗?
认为是的举手,认为不是的举手。为什么不是呢?
生:这些图形中心到角的距离比到边的距离要长一些。上前面指着说。
师:这些图形是不是一中同长? 生:不是。
师,不是的理由就是:从这个中心到边上的点跟到顶点的点的距离就不一样。那有没有一样的?正三角形里有几条一样的?
生:3条。师:正方形呢? 生:4条。
师:正五边行呢? 生:5条。师:正六边行? 生:6条。师指圆: 生:无数条。
师:无数条?[板书]为什么是无数条? 生:圆心到圆上的半径都相等。所以有无数条。师:我们解决的是什么问题?
生:我们解决的问题是相等的半径有无数条。师:为什么有无数条? 生:圆心到圆上的距离都相等。师:圆周上有多少个点? 生:无数个。
师:这些点和圆心连起来当然就有无数条,是吧。圆周上有无数点,请问:从这到这有多少个点?[指圆弧线]
生:无数个。
师:这些图形一中同长的条数是有限的,而圆从圆心到圆上的距离都是一样的。古人说的“圆,一中同长”你认同吗?
生:认同。
师:经过我们讨论更认同了,不过刚才有同学说圆是没有角的。圆只有1条边,边是曲线。究竟哪个更重要呢?我们来看[课件出示
椭圆]这个图形是不是没有角的。是不是只有1条边,边是曲线。它是圆吗?它一中同长吗?所以说一中同长是圆最重要的特征。墨子的这一发现比西方早了1000多年,谁能学古人的样子读一读??
生读。
师:圆有什么特点? 生:一中同长。
师:我们来看小明的宝藏在什么范围?我们第2个问题解决完了吗?
三、画圆中感受“圆”
1从不圆中,感悟圆的画法。
师:孩子们,想自己画一个圆吗? 画圆用什么? 生:用圆规。
师:古人说:没有规矩,不成方圆。大家看,规就是圆规、矩就是带着直角的尺。规是用来画圆的,矩是用来画方的。
师:既然大家都回会画?画一个半径为4厘米的圆
(生自己画圆)
师:画好了吗?
(展示学生的作品,学生此时的作品都不怎么标准)
师:从这些圆里,我们是否可以想象,它们是怎样创造出来的?
师:看来画圆并不是一件很容易的事,小组里交流一下,怎样画圆才能标准?
(生小组交流)
师:大家交流完了,好了。那现在你们说一下是怎么画的? 生:用圆规
师:了解圆规的发展,现在圆规的优点在哪里?
师:用这样的圆规画圆,手必须拿着哪,圆规就不动了?
生:拿着圆规的头,不能捏着它的两条腿。
师:对,就是拿住圆规的头,而不能捏着它的两条腿。
*(课件出示:再画:一个直径是4厘米的圆)
生画,师巡视
师:哎呀,老师在巡视时,我发现你们画的较规范的圆,大小不一样,为什么?
生:这里要我们画的是直径4厘米的圆。
师:你知道什么是直径吗?顾名思义,它和半径是什么关系?
生:直径是半径的2倍。
师:订好距离,就是圆的半径。
师:孩子们,谁愿意上来画一画。这个机会老师留着了。师:展示画圆,故意出现破绽一:没有“圆”上?破绽二:没有画完?
生:两脚之间距离变化了;粗细不均匀; 师:你们真仔细,我把汗都画出来了。2标上半径、直径。
师:学生标直径和半径;你说在画半径时特别注意什么? 生:在画半径时特别注意对齐圆的圆心,画完后表上字母r;
师:半径有两个端点,一个端点在(圆)上,另一个端点呢? 生:圆心;
师:再画一条直径;刚才他画的时候你注意到了吗?应该特别注意什么?那位戴眼镜的小伙子。
生:一定得通过圆心。
师:直径用字母d表示,数学上就是这么规定的。d和r是什么关系?
生:2倍,d=2r。师:画圆是怎样画的?
师:先确定一条半径,也就是两脚之间的距离,然后确定一个圆心,再旋转一圈。为什么随手就能画出一个圆呢?
生:圆规画长是半径
师:为什么这么做呢?先确定圆心,半径长度。生:圆心到圆上的距离就不相等了
师:圆的特点:圆一中同长。知道圆的特点太重要了。
四、球场上解释“圆” 1.出示篮球场。
师:是什么?中间是什么?中间为什么是个圆?不知道篮球比赛是怎么开始的,不能回答这个问题,我们一起来看。
2.播放篮球开赛录像。师:为什么中间要是个圆呢?
生:刚开始比赛要往对方场地传球,这样中间画圆比较公平。
师:队员在圆上,球在中心。圆一周同长,比较公平。3.探讨大圆的画法。师:这个圆怎么画?
生:先找到圆心,两点间距离固定好,再画 师:大圆,再大,超大呢?没有圆规可以画? 生:用大拇指当圆心,用食指画 师:画大圆?
生:确定圆心半径再画。师:这个大圆,没有圆规怎么画? 生自由交流 4.追问大圆的画法。
师:不是没有规矩不成方圆吗?怎么没有圆规也能画圆? 生:规矩不一定单独指圆规,指的应该是画图的工具。我们可以用不同的工具来画。
师:我们这句话还是对的。
五、回归情景突破“圆”
1.出示爱因斯坦的名言:“我没有什么特别的才能,不过喜欢寻根刨底地追究问题罢了。”
2.追问中提升认识。
师:一定这样吗?宝物一定是在以左脚为圆心,半径是3米的圆上吗?[课件:西瓜]宝物可能在哪里?
生:地下。
师:拿西瓜说事。我们就想到球了,球也是一中同长。圆和球有什么不同?
生:圆是平面图形,球是立体图形。
六、课后延伸研究“圆”
依一天时间顺序,配乐出示各种各样的圆。【试教后的反思】
非常成功,非常享受!已经拖课了,学生还是不愿意下课。
师父张兴华满意地对我们几个徒弟说:“应龙的这节课,我就七个字——浑然大气铸成圆!”
认识决定行为。已有的会成为包袱。备课时,我就觉得半径、直径不要像原来那样教,一问学生“这是一个多大的圆”,学生就会说出“半径、直径”。课堂事实也是这样,就让自己不再思考了。试教后一反思,才发现“宝物在哪儿呢?”是个更妙的问题,首先是回答了探讨的问题,其次是凸显了圆心定位置,半径定大小。现在想来,这样问,味道好极了!
正像电影《阿甘正传》中,阿甘妈妈对阿甘说的:“要想往前走,就得甩掉过去。”是啊,我今天的教法不就是想“甩掉过去”吗?但甩掉别人的过去容易,甩掉自己的过去就难了。否定别人容易,否定自己难。我是这样,听课老师会不会也是这样,而不肯接受我这节课呢?应该坦荡荡,何必长戚戚,“我的地盘我作主”,30年后再说吧。哦,我不该这样想,数学研究者往往是孤傲的,认为只有自己发现的“1”才是对的,我应该再思考,再否定自己,就像硬汉海明威
说的“比别人优秀并无任何高贵之处。真正的高贵在于超越从前的自我”。
顿悟:几何画板上显示“正多边形和圆的关系”应该从正六边形开始,这样暗合了刘徽割圆术也是从正六边形开始的,并且解决了几何画板上正三角形不正、看着不舒服的问题,还解决了与前面研究正三角形、正方形、正五边形、正六边形“一中同长”重复的问题。哈哈,反思真好!
课上学生画出的“不圆”的资源化运用,感觉真好:有方法上的启迪、情感上的善意、借走橡皮的回应,那意境真有林黛玉说的“留得残荷听雨声”的美妙。
在完成了为什么没有规矩也画成了圆的追问,我说——是啊,圆心只能“一中”,半径一定“同长”。当我们真正理解了祖先的“圆,一中同长也”,才知道以前听说的“圆心”、“半径” 是多么重要的两个词啊!——之后,看到学生闪亮的眼睛,我心里真舒畅。这样不就把经验、直观与抽象结合起来了吗?数学的抽象首先是一个过程,其次不就是建立一套术语概念系统吗?
……
……
整体感受——在学生需要教的时候再教,效果就是好。看来我说“教是因为需要教”,没错!
自己以前也教过《圆的认识》,为什么没有今天这么享受呢?莫名地,我想起《老子》第四十五章:“大成若缺,其用不弊。大盈若冲,其用不穷。大直若屈,大巧若拙,大辩若讷。……”这几
句话的意思是:完全做成的东西,看上去好像缺了些什么,但用起来却一点也不差。完全装满水的容器,看上去好像是空的,但用起来却一点也不少。非常直的东西看上去却好像是弯的,大的机巧看上去倒好像很笨拙,特别善辩的人看上去倒好像不会说话。
那,我“成”在哪呢?在没有增加新知识点的情况下,上得学生不愿意下课。让学生体验到不同现象背后的本质是一样的,让学生体验到认识事物“特征”的价值,让学生认识圆的“规矩”的同时感受了研究问题的“规矩”,让学生体验到追问“为什么”是一件很有意味的事情……爱因斯坦曾经说过这样的话:“用专业知识教育人是不够的,通过专业教育,学生可以成为一种有用的机器,但不能成为和谐发展的人。要使学生对价值(社会伦理准则)有了理解并产生出热烈的情感,那才是最基本的。”
那,我“缺”在哪呢? 这一节课,对原来所重视的基础知识和基本技能淡化了,学生发展的情况究竟如何?
以前,我教《圆的认识》时,总是觉得这不能丢,那也不敢掉,把自己扣牢在自己和他人一起画就的小圆里……
哈哈哈,现在的我真是在理想“圆”里!
为什么以前的我没能、没敢这么上?教学的能力不到, 教学的勇气不够,教学的追求没有……
为什么今天的我能这么上、敢这么上?课程改革的深入,百花齐放的氛围……大抵还源于自己对自己和他人教育实践的过程和结果的意义和价值的哲学之思。
“花未全开月未圆”,大成“有”缺。革命尚未成功,同志仍需努力!
拖课了,总是不好,如何在40分钟内和学生交流?要舍什么?
这节课,多处引经据典,是否过“度”了?“度”是几处呢?数学味淡了?那我们的课堂是为了学生的发展,还是为了上出一堂“数学的课”?话又说回来,哪一处又是与“数学”无关呢?是否只是“顺手一投枪”(鲁迅语)?那老师“顺手”多了,学生是否会目不暇接、“审美疲劳”?
如何在教学中践行并彰显数学的文化本性,让文化成为数学课堂的一种自然本色,让我们的课堂显得更美丽、更深邃、更人文?笔者在教学省级公开课《圆的认识》这一课时,从“体验”“亲历”“解决”三个方面引导孩子步入了数学文化的殿堂,用数学文化点亮他们心中那盏发展的明灯。
一、“心灵体验”,感受圆蕴涵的数学之美
圆是数学中一种非常特殊的图形,在这节课的设计上我改变了传统的教学模式,试图通过一些充满哲理的话来引领整个课堂,使学生在领略古人智慧文明的同时,充分体验到圆所具有的独特魅力,深入理解圆的本质特征。
师:(出示圆形纸片)认识它吗?(生答:认识,是圆形)在哪见到过圆形物体?
生:瓶盖、钟面、碗……
师:今天老师也带来了一些,见过平静的水面吗?(生答:见过)如果从上往下扔一颗石子下去会发生什么情况?
生:圆形的水波。(师出示图片)
师:像这样的现象在自然界中随处可见,我们来欣赏一下。(出示各种图片:向日葵、月球环形山、星球轨道、星系云团)找到圆了吗?感觉怎么样?
生:太美了!
师:是啊,真美!正是因为有了圆,我们的世界才变得如此美妙神奇,所以在2000多年前,有一位伟大的数学家毕达哥拉斯就发出这样的感叹!(课件出示“在一切平面图形中,圆最美”)
师:你们有这样的感觉吗?(有)那它美在哪儿呢?和其他图形比有什么特别之处吗?
生:没有角,线是弯曲的。
师:我们把这样由曲线组成的图形称为曲线图形,而另一些由直线组成的图形称为直线图形。(出示各种图形)那这两个图形也是曲线图形(师手指图形),与它们比,又有什么特别?
生:没有凹凸不平,各个地方都很平整、光滑、饱满。
师:是啊,正是因为如此特别,才显得美丽无比!
我选择了从最常见的自然现象引入,引发学生感受圆无处不在的神奇魅力,又通过毕达哥拉斯的名言,使他们认识到原来圆如此神奇,以此来激发学生对圆强烈的探究兴趣。学生对数学的奇妙产生浓厚的兴趣,并能受到深刻的感染。数学文化在这里得到了较好的体现。
从以上案例可以看出,数学课堂的文化教育,必须突出学生内心情感体验,要让学生在学习中感受到数学本身的内在美。而教师在设计数学教学时,要调适好自己的数学观、数学文化观、数学价值观,廓清自己对数学的文化的理解,涉猎一些关于数学历史典故、趣闻轶事等,必要时,还可以了解一些高等数学方面的内容、思想、方法,以打开自己的数学视野,用文化润泽数学课堂。
二、“亲历动手”,实践圆蕴涵的现实之美
要真正领悟与体验圆所蕴涵的文化内涵,必须要经历实践探索,要让学生亲自动手,通过看一看、摸一摸、画一画、比一比,甚至滚动、碰撞等动作,感受圆在现实情境中的不同表现,从而进一步加深对圆的认识。
师:古人对圆的了解可远不止这些,关于圆我国古代思想家墨子还有一句很经典的话,想不想知道?(生答:想)
师:(课件出示“圆,一中同长也”)知道是什么意思吗?一中是什么?
生:就是指一个中心点。
师:一中指的是一个中心点,圆的中心点称为圆心,通常用字母O表示。
师:同长呢?
生:就是一样长。
师:那什么一样长呢?
生:半径。
生:直径。
师:有人说半径,也有人说直径,这两个都是新词语。那半径指哪条线段?会画吗?(请学生到黑板上画)
师:所以半径指怎样的一条线段?
生:圆心到圆上一个点的线段。
师:是的,我们把圆心到圆上任意一点的线段称为半径,通常用字母r表示。(学生在自己画的圆上画一条半径,标上字母)
……
师:那我们能把这完美的圆画下来吗?用什么画?(圆规)老师为每位同学准备了一个圆规和一个硬币,当然你也可以用自己准备的材料画出一个圆,会吗?(学生独自画圆,交流方法)
师:你认为哪种方法最好?为什么?
生:用圆规画好,因为画的圆更标准,而且可以画大小不同的圆。
师:谁能来介绍一下怎样用圆规画圆?
生:先把针尖固定,然后转动把手轻轻一转,注意画的时候针尖和笔尖的距离不能变。(教师示范画,然后学生画)
师:其实用圆规画圆这个方法我国古人早就知道了,从一句俗话中就能看出来。(课件出示“没有规矩,不成方圆”)这里的规就是指圆规,而矩指的是一种带直角的尺,意思是只有用规矩来画方圆,才能画得最好。
师:比一比你们画的圆,看看它们的大小、形状等各有什么相同或不同。
这一环节主要让学生认识圆的一般特征并积极主动地去画圆。在掌握用圆规画圆的方法之后教师出示俗语“没有规矩,不成方圆”正是水到渠成之事,数学文化中也体现了人文哲理。而在比较后,教师还让学生列举与观察了很多现实生活中的圆形物体,并引导学生分析圆形物体的特点,这对于加深学生对圆的本质属性的认识起到了强化作用。
以上案例反映出,数学文化教育必须让学生感受与亲历实践过程,学生只有在动手、动脑与不断摸索的过程中,对数学本体的认识才会趋于理性与深入。而教师要充分创造条件,引领学生参与互动、创新发现。
三、“问题解决”,探究圆蕴涵的现实应用
数学文化教育最后的归宿,是引导学生走向数学应用,即从理论概括与艺术化走向现实情境,从而去解决现实中的数学问题。在这一过程中,必须引导学生主动进行探究,不断创新,引导学生学会运用数学知识解决现实问题,构建科学的数学问题解决思维模式。学生只有经历了数学问题的应用解决,才能在更高层次上对数学学习提出新的挑战,构成螺旋式发展。
师:墨子说的同长既指同一圆内的半径相等,也指直径相等,同意他说的话吗?(生答:同意)是啊,我们刚才都验证过了,所以圆是一中同长的图形,但难道只有它是吗?比如正三角形、正四边形、正五边形就不是吗?
生:不是,因为中心点到角上的距离和到边上的距离是不相等的。
师:所以只有圆是一中同长的图形。你还有什么发现吗?
生:正多边形的边数越多,就越接近于圆。
师:难怪有人说圆是一个正无数边形,现在你又有什么感觉?
生:圆太奇妙了!
生:越深入了解,越觉得圆美!
师:是啊,圆真的是太奇妙了,而我们的古人也真是了不起,短短6个字竟蕴藏了这么多圆的知识,而且我国的这一发现比西方国家早了1000多年呢!
师:现在让我们运用所学的知识来解释生活中的一些现象好吗?(出示图片)为什么石子扔下去会形成圆形的水波?
生:石子投下去的地方就是圆心,力量均匀向四周散开的波纹就是圆。
师:篮球比赛开始时,两队队员要争球,球在哪?队员在哪?为什么要这样安排?
生:圆心到圆上任意一点的距离相等,这样就非常公平。
生:就是一中同长嘛!
师:举行篝火晚会时,人们自然地围着火坐成了圆形,为什么?
生:每个人到火的距离相等,可以感受到同样的温暖。
师:中国人吃饭喜欢用圆桌,为什么?
生:坐的人多。
生:每个人都能夹到每一样菜,公平。
生:大圆桌和小圆桌的圆心应该在同一位置上。
师:这个图认识吗?(出示阴阳太极图)知道是怎样构成的吗?
生:一个大圆和两个小圆。
师:如果告诉你小圆半径是3厘米,你还能知道什么?
生:小圆直径6厘米。
生:大圆半径等于小圆直径。
随着研究的深入,学生已验证了古人的话,但这时学生对圆的认识还不够深入,教师又提出疑问:难道只有圆是一中同长,其他正多边形就不是吗?得出圆是正无数边形。通过这一环节的设计,才使他们真正认识到圆的本质特征,同时又渗透了极限思想。教师再让他们运用所学的知识解释自然界和生活中的圆、画太极图等活动,对知识进行巩固应用和提升,激发学生用心去关注生活中的圆。
以上案例表明,数学教学必须引导学生从低层次的知识学习到高层次的问题解决,要通过不同层次的发展与目标要求,不断引导学生更新知识结构,构建完善的数学思想体系,丰富数学体验与数学情感,让数学文化特性浸润于学生的心间,成为学生数学成长的不竭动力源泉。
回龙草联
沈国安
一、教材
1、教学内容及其所处的位置与作用
“圆的认识”是“人教版”六年级上册第四单元的内容,它是几何初步知识内容,既是一节起始课,也是后继学习“圆的周长”、“圆的面积”、“圆柱”、“圆锥”的基础。
2、学生情况分析
学生在日常生活中经常接触到圆形物体,在低年级也已经初步认识过程,但都是直观的表象的认识。
3、教学重难点
进一步认识圆的特征及其内在的联系,使学生深刻体会到圆与我们生活的密切联系,并学会用圆规画标准的圆。
二、教学目标
新课程标准提出:数学教学要紧密联系学生的生活环境,从学生的经验和已有的知识基础出发,创设有利于学生自主学习,合作交流的学习方式,使学生通过观察、操作、归纳、类比、猜测、交流、反思等活动获得基本的教学知识与技能,进一步发展学生的思维能力,激发学习兴趣,培养学生学好数学的自信心,因此,我把本节课的教学目标定为以下三点:
1、使学生认识圆,掌握圆的特征,理解直径与半径的关系。
2、会使用工具画圆。
3、培养学生观察、分析、综合、概括及动手操作能力。
三、教法和学法
本节课我将采用多种教学方法进行教学。用“情境教学法”,导入新课,激发学生的学习兴趣,引导学生深入研究圆与我们生活的密切联系,用“活动探究法”让学生主动探索,实践操作,认识圆的各部分名称及具体特征。用“小组合作法”让同学们在小组活动中,相互合作,创造性的以不同方法画圆。如果按照以上的方法实施教学,那么学生在学习过程中将会主动尝试,自主探索,以小组合作交流的方式,深入地认识圆、了解圆。
四、教学过程
新课程标准为我们教师展示了一个崭新的教育教学理念,面对着实实在在的孩子,我的设计本着既要关注学生的知识与技能的培训,更要关注学生的学习过程与方法,情感态度与价值观的形成的教学思想,对本节课的教学,我精心设计了二个主要环节。
(一)、创设情境、导入新课
首先复习以前学过的平面图形有哪些?这些图形都是用什么线围成的?简单说出这些图形的特征。
(二)、突出主体、探究新知
1、初步感知圆
首先我会让学生举举生活中的例子。“日常生活中哪些物体的形状是圆的?”学生可能会说出:硬币、光碟、路标、钟面、车轮等,这些物体的形状都是圆的。让学生初步感知圆,培养学生的空间想象力。
接着,我会出示的两组图形,第一组是长方形、正方形、三角形、梯形、平行四边形,第二组就是刚认识的圆,通过对比,可以清楚地看到,第一组图形是由线段首尾连接所围成的,而圆是由曲线所围成的,形成正确表象——圆是一种平面上的曲线图形。
2、认识圆的各部分名称和特征
(1)找圆心
首先让学生把事先准备好的圆形纸对折后打开,用笔和直尺把折痕画出来,并在圆形纸的其他位置上重复上面的折纸活动二、三次。操作后,问:“你发现了什么?”学生亲手操作后,发现所有的折痕都会相交于一点。这些折痕的交点,正好在圆的正中心,我们数学上把这一点叫作圆心,用字母“O”来表示。(设计意图:通过学生的直观操作,使学生的学习过程“动作化”,调动学生多种感官参与学习,并有意设置一些认知冲突,让学生积极主动地参与知识的形成过程。)
(2)认识半径、直径
连接圆心和圆上任意一点的线段叫做半径,半径一般用字母r表示。让学生通过动手画一画,小组议一议,引导他们归纳总结出:在同一个圆里,半径能画无数条,所有半径的长度都相等。
通过圆心并且两端都在圆上的线段叫直径,直径一般用字母d表示。在这里因为有半径的知识做基础,我会尝试放手,让学生小组合作探讨直径的知识,引导他们归纳总结出,在同一个圆里直径也能画无数条,所有直径的长度都相等。
(3)探讨半径和直径的关系
分组讨论在一个圆里,半径和直径有什么关系?通过测量和比较,让学生理解和掌握在同一个圆里半径和直径之间的关系,让学生用含有字母的式子表示半径是直径的一半、直径是半径的2倍关系。得出d = 2r与r = d/2的字母公式,并在练习中通过填表强调了圆内半径与直径的对应关系,还要求学生在圆内一些线段中,找出半径和直径。(设计意图:合理发挥学生的主体作用,让学生动脑、动手、动口、动眼,自主探索知识的形成与发展,并及时巩固学习成果。)
3、掌握画圆方法
在教学画圆的过程中,我同样会放手让同学们大胆的动脑,动手探索不同的画圆方法。学生可能会想到借助圆形物体画圆,用绕线钉子画圆,还有用圆规画圆等等。最后我会试着让学生用圆规在练习本上画圆,并要求一边画,一边想画圆的步骤有哪些。通过学生的汇报,我引导他们归纳出画圆的一般步骤:(1)定点(也就是定圆心的位置)(2)定长(也就是定半径的长度),(3)旋转画圆。接着我会示范一次画圆的方法,强调画好后要标出圆心,半径和直径。
五、巩固练习
1、画一个半径是2厘米的圆。再画一个直径是5厘米的圆。
2、判断,并说为什么。
(1)
半径的长短决定圆的大小。()(2)
圆心决定圆的位置。()(3)直径是半径的2陪。()(4)
圆的半径都相等。()
(这些题进一步加深对圆的认识,并培养学生分析、推理和判断能力。)
六、拓展练习
在操场如何画半径是5米的大圆?
七、板书设计
圆的认识
圆心O
半径r
直径d
半径是直径的一半:d=2r或r=d/2
金河镇双金桥小学吴 润 教学内容:九年义务教育六年制小学数学第十一册 教学目标:
知识目标:组织学生通过画一画、折一折、观察体验圆的特征,认识圆的各部分名称,理解在同一个圆内直径与半径的关系。
能力目标:让学生了解、掌握画圆的多种方法,初步学会用圆规画圆; 转变学生学习的方式,培养学生观察、分析、概括等思维能力和初步的空间观念。
德育目标:让学生养成在交流、合作中获得新知的习惯。教学重点:探索出圆各部分的名称、特征及关系。教学难点:通过动手操作体会圆的特征。
教学过程:
一、创设情境,感知概念。
1、师:同学们这节课老师给大家带来一些美丽的图案,你们想看吗? 生:想看。
师:看时请同学们认真观察这些图案有什么共同特征? 生:这些图案都是由圆形组成的。
2、师:圆在生活中随处可见,请你想想,在哪里还见到过圆?
3、师:圆把我们的世界点缀得如此美妙而神奇。今天这节课让我们一起走进圆的世界,去探寻其中的奥秘,好吗?(板书课题:圆的认识)
二、探究感悟,理解概念。
1、师:每个小组的信封里都有许多学过的平面图形,闭上眼睛,你能从中很快挑出圆吗?把你的想法和组员交流。
2、活动后汇报:圆和我们学过的图形有何区别?
3、以前我们学过的平面图形如长方形、正方形、三角形、平行四边形和梯形的共同特征,都是由线段围成的直线图形。而圆是一条曲线围成的封闭图形。
三、交流反馈,形成概念。
1、自学画圆
我们先研究圆的画法:
(1)、刚才大家已经认识了圆,那么,想不想把它画出来呢?
(2)、学生分四人小组尝试画圆,看谁的方法多。(用手画、沿圆形物体画一圈、用圆规画。分别展示自己画的圆)
(3)、用哪一种方法画圆既正确又方便呢?说说怎样用圆规画圆(介绍圆规的各部分)。师生共同板演。提问:用圆规画圆应注意哪些问题?
(4)、师强调:画圆时,圆规两脚间的距离不能改变,有针尖的一脚不能移动,旋转时要把重心放在有针尖的一脚。
(5)、学生练习用圆规画圆:以30秒比赛的形式进行。
2、探讨圆心。(小组合作)
圆有哪些特征呢?请同学们拿出你的学具圆,上下对折,打开;出现一条折痕,左右对折,打开;又出现一条折痕,换个方向对折打
开 …… 反复折几次,你发现这几条折痕怎么样?
师指出:这一点是圆的中心,叫圆心。圆心一般用字母0表示。
3、探讨半径(小组合作)
在你的圆上任意找一点,连接圆心和这一点得到一条线段,你还能画出这样的线段吗?再画几条,用尺子量一量这些线段,你发现了什么?(长度都相等)
师小结:像这样的线段我们把它叫做半径。半径一般用字母r表示。
4、探讨直径(小组合作)
用尺子沿着一条折痕画出一条线段,再画几条,用尺子量一量这些线段,你发现了什么?(长度都相等)
师小结:像这样的线段我们把它叫做直径。直径一般用字母d表示。
5、小组合作交流:我们知道了圆的半径和直径,那么它们之间又有什么关系呢?请同学们自己动手量一量、画一画、折一折、比一比,然后把你的发现和你的同桌进行交流。
生:①各条折痕的交点刚好在圆心上;②通过圆心可以折无数条直径和无数条半径;③直径是半径的2倍;
板书:d=2r,r= 1/2 d(在同圆或等圆)
6、(小组合作)讨论:圆的半径和圆心与圆有什么关系呢?(半径决定圆的大小,圆心决定圆的位置)
三、课堂练习,巩固深化
师:同学们掌握得真好,下面让我们来完成几道挑战题。
1、判断直径和半径。
2、你能用今天学习的知识来解释一下为什么车轮子要设计成圆形而不设计成方形或其它形状吗?
3、你能量出硬币的直径吗?
四、拓展练习:
创作:可以画出任意大小的圆,组合自己心中最美丽的图案!(学生在创作的过程中,播放轻音乐。)创作完成后在实物展台上展示
五、课堂小结。
同学们,通过这节课的学习,你有什么收获和大家分享?同学们说得多好啊!数学中也有很多美,只要你认真探究,善于发现你就能感受到美。
六、板书设计:
圆的认识
圆心(O)——定位置
半径(r)——定大小——无数条——相等
直径(d)——无数条——相等
一、在圆的教学中应当注重课堂知识的引入
小学教学不同于其他阶段的教学, 我们在进行教学的时候应当注重学生对知识概念的理解能力. 在教学中应当以学生为根本, 从学生的角度出发, 帮助学生建立一个符合其理解能力的圆的知识的引导课. 我们在进行圆的教学的时候应当从学生的角度设置教学引导课. 生活中圆随处可见, 我们在教学的时候可以从生活的角度出发将圆的教学内容引入课堂教学中. 生活化的教学模式可以为学生建立一个更为易于理解的教学环境, 同时贴近生活的教学方式能让学生更快地融入到课堂学习之中, 激发学生的学习兴趣. 我们在知识导入的时候应当注重用类似的方法, 帮学生建立一个易于学生理解的教学方式.
例如, 可以将课程导入分为以下几个部分. 首先通过老师用线绳工具在空中旋转, 让学生清晰地看到形成的轨迹是一个圆;接着介绍含有圆的图片, 让学生找出圆;再让学生举例生活中见到的圆;最后通过摸一摸的游戏, 让学生体会圆与其他平面图形的区别, 从而认识圆是平面上的一种曲线图形. 通过这种能够看得见摸得着的课程导入方式 能更为自然, 贴近生活的教学方式更易于理解. 这种引入教学的方式为学生建立了一个圆的教学的基础概念, 有助于课堂教学的展开.
二、圆的教学应当注重基础环节
很多教师在教学的过程中认为概念性的知识不需要过多的讲解只要学生下工夫记就可以, 因而忽略了概念教学的重要性. 在教学中我们应当对基础知识的教学引起足够的重视, 只有打下扎实的基础才能提及分析与解题. 圆的教学也一样, 我们在教学过程中应当注重概念等基础教学阶段, 让学生对概念有正确的认识. 通过强调概念教学, 帮助学生建立扎实的基础, 为日后的数学教学做好铺垫. 良好的基础知识是学生学习数学的关键.
在概念教学中我们也应当注重教学方法. 先让学生通过自学书本, 找到圆各部分的名称, 并认识它们, 能在自己画的圆中标出. 接着通过小组合作讨论的形式, 发挥学生学习的主动性, 让他们通过有目的的探究活动, 讨论交流半径的特征、直径的特征、半径和直径的关系以及圆是轴对称图形等相关知识. 最后, 教师可以针对学生的理解进行一定的总结归纳, 并对学生理解的误区进行纠正. 这种教学方式能够为学生在圆的基础知识的学习上建立良好的基础.
三、结合多媒体提高课堂教学的灵活性
在现代化教学手段丰富的今天, 数学教学也不仅仅局限于板书. 我们可以在课堂上结合多媒体教学等 多种教学 方式, 为学生建立一个多元化的课堂教学体系. 在教学中恰当地依托多媒体进行教学可以使教学内容形象化, 同时也方便学生的理解. 另外, 在小学阶段学生对网络资源充满了好奇, 充分利用多媒体教学可以激发学生的学习兴趣. 在圆的教学中, 我们可以结合多媒体教学为学生呈现一堂更为丰富的数学课程.
例如, 在研究圆的半径、直径的特征时, 当学生通过画一画、折一折、量一量, 知道在同一圆中半径可以有许多条, 在此基础上运用多媒体动态演示:同一圆中, 从圆心到圆上可以发散出无数条线段. 通过强烈的视觉刺激, 让学生体会到同一圆中半径有无数条, 感受初步的极限思想. 多媒体的教学方法不仅有利于学生的理解, 同时也在课堂教学方面具有很大优势. 由于多媒体更为形象化、具体化, 就使得教学过程更为简单、清晰. 同时, 以多媒体的形式展开教学也更易于学生理解与接受.
四、圆的教学要注重动手过程
在圆的教学中, 我们可以通过让学生学会自己动手画圆这一方法实现让学生更好地理解圆的概念和基本性质. 学生通过自己动手画圆的过程可以对圆的有关性质进行思考, 有助于学生更好地理解圆的概念. 在教学中我们也应当注重学生自主动手学习的教学环节, 让同学通过动手学习的方法去理解课堂教学的内容. 同时, 这种动手与动脑相结合的教学方法可以帮助学生更好地理解数学教学的内容. 在数学教学中我们应当将圆的课堂知识与动手教学相结合以达到更好的教学效果. 在数学的概念教学中以往的教学灵活性不够, 导致在课堂上不能很好地激发学生的学习兴趣, 我们应当充分利用动手教学这一方法让学生融入到课堂之中, 主动思考.
动手画圆可以分为实物拓圆、线绳画圆、尺规画圆等方法, 在课堂上可以让学生自己尝试各种画圆的方法. 这种方法能让学生在画图的过程中更好地理解圆的概念, 让学生在画圆的过程中自己对圆的性质进行探索. 在学生画圆后, 教师可以对圆的性质以及方法进行适当的总结, 帮助学生更好地认识圆的基本概念. 让学生在进行尝试的过程中体会画圆的本质, 即为在定点上以定长旋转一周. 同时, 学生在动手的过程中也能够更好地激发自己的学习兴趣, 在一种愉悦的课堂氛围下进行自主学习.
庵东镇东一小学
金培
一、教学目标:
1、通过学生的实际操作活动(应用不同工具画圆),认识圆并掌握圆的本质特征。
2、学会用工具画圆;
3、通过自学、找圆心等活动,掌握圆内各部分名称及其关系;
4、培养学生的观察能力,动手能力以及抽象概括能力。使学生初步学会应用所学知识解决简单的实际问题;
二、教学过程:
(一)、创设情境,引入新课。
师:同学们,喜欢打篮球吗?
(喜欢)老师也很喜欢打篮球。
师:现在老师有一个问题想问问大家,看屏幕这是我们班同学在体育课上在进行投篮比赛,安排这样的队形,你们认为公平吗?有什么好的建议?
师:你们都同意站成圆形,我也同意。这又是为什么呢?相信通过这节课的学习,你一定会解决这个问题的。
师:今天我们就来进一步认识圆。(板书:圆的认识)。(二)、展开
1、教学圆的各部分名称。(1)自学课本。
师:看大屏幕,这些是我们以前学过的平面图形,这是圆,和以前学过的平面图形有什么不一样呢?
师:我们把曲线里面的部分叫做圆内,在这条曲线上叫做圆上,这条曲线的外面叫做圆外。
师:你还知道圆的哪些知识?……(2)学生汇报:
圆心:画圆时,固定的点叫做圆心,通常用字母O表示。半径:从圆心到上任意一点的线段,叫做半径,通常用字母r表示。直径:通过圆心并且两端都在圆上的线段,叫做直径,通常用字母d表示。(3)练习:指出圆的直径和半径。
2、画一个标准的圆(圆规画圆的基本技能基本方法),并标上各部分名称。(1)学生试画圆
师:请同学们用手中的圆规画一个标准的圆,并标上圆的各部分名称。(学生画圆)
师:为什么有的同学会画不圆,有的同学却画得很圆?谁能到上面给大家说说怎样才能把圆画好?(2)学生汇报。
①把圆规的两脚分开,定好两脚间的距离。②把有针尖的一只脚固定在一点上。
③把装有铅笔尖的一只脚旋转一周,就可以画出一个圆。
师:圆规两脚间的距离就是什么?(半径)画圆时固定的一点就是什么?(圆心)师:你认为画圆时还要注意什么?
①重心应放在有针尖的一脚; ②两脚间的距离不准变。
师:现在画的圆了吗?请同学们在纸上画一个半径2厘米的圆。(3)圆的大小和位置的确定。
师:我想画一个小一点的圆怎么办?…画一个比刚才大一点的圆怎么办?… 师:圆的大小和什么有关呢?(半径)那么,圆的位置和什么有关呢?(圆心)师:也就是半径决定了圆的…,圆心决定了圆…。齐读:半径决定圆的大小,圆心决定圆位置。(4)画圆的不同方法。
师:是不是画圆都要用圆规呢?足球场中心的大圆可能是怎么画出来的?小组同学讨论一下。
师:老师这里有一些工具,你能用这些工具画圆吗?小组里商量一下。师:这些画法有什么共同的地方?
学生汇报:定长(半径)、定点(圆心)、旋转一周。
3、找圆心(圆形纸片)(1)出示活动要求。
①请你想办法找出圆片的圆心。
②在找圆心活动中你发现了圆还有什么特点?学生活动。(教师指导)(2)汇报找圆心的方法及新的发现。
师:四人小组讨论,圆还有什么特点?学生活动。(教师指导)学生汇报:
生:圆是轴对称图形,直径是对称轴。师:你是怎么知道的?
生:半径有无数条,所有的半径都相等,直径有无数条,所有的直径都相等。师:为什么半径有无数条?(生回答)生:直径是半径2倍,半径是直径的1d,也就是d=2r,r=。22师:老师黑板上的圆的半径和同学们手上圆的半径都相等吗?老师黑板上的圆的直径是同学们手上圆的半径的2倍吗?所有的半径都相等,所有的直径都相等,直径是半径21倍,半径是直径的,必须符合什么条件?(在同圆或等圆内)
2师:下面,我们就一起来读一读我们的发现吧。
三、拓展与应用。
1、练习。
2、解释生活中的现象。(1)桌子为什么做成圆的?
(2)看猴戏表演的人群问什么会围成圆形?同学们的投篮比赛(3)现在你能解释同学们投篮比赛围成圆形比较公平的道理了吗?(4)车轮都做成圆的,车轴装在哪里?为什么?(参考用工具:自行车)
四、总结
一、发现
(一)知识前测
1、师:同学们,昨天的作业:在一个长21厘米,宽12厘米的长方形纸上画一个最大的圆。画好了吗?
2、师:举起来让老师看看。怎么画这个圆的呢?
生:……,师:能上台演示吗?
3、师:看来,要画这个圆就要用圆心来确定…,半径或直径来确定…。
师:而长方形中画圆,圆的直径是被长方形中较短的那条边(宽)所控制的。
(二)发现问题
1、师:看到半径,你可以联想到什么知识呢?
生:周长、面积。
2、师:周长和面积的知识有哪些呢?
二、探究
(一)小组合作,回忆旧知。
1、师: 昨天,同学们整理了很多,下面请小组合作在白纸上整理、粘贴关于圆的周长和面积的知识。
生:小组合作、讨论、粘贴。【5分钟左右】
2、师:分享下你们的成果吧。
【生边说师边帖关于周长和面积的知识】
【请大家仔细倾听,补充你们和他们不一样的地方。】
3、师:有补充吗?
4、师:圆的周长和面积的公式是怎样得来的呢? 【师:演示圆的周长和面积的推导过程。】 【完成所有板书】
5、师:现在,你们的智慧已经全部集中在这张地图上,这尽是由一道题引来的思维上的不断扩散。像这种联想记忆的办法是对“旧知识”进行复习的有效的方法之一。
师:刚才我们就整理与复习了一单元《圆》【板书课题】 师:口答训练【对基础题型的口答,生生对答】
(二)提升
1、师:除了整理知识,复习还包括改正错误。来看看昨天同学们做的3道题吧。
【出示3道题,并出现错误率】
2、师:想想这些同学会怎样做错?试着进入他们的思维想想,把做错的过程和错因写下来。
3、师:四人小组完成。
【合作要求】:
①每小组只选一题进行分析,可以写成多种方法。②每组中书写速度较快的同学记录,其余同学分析。生汇报。
4、师:总结解题的方法:画图分析
三、提升
在分析错误中,大家分享了自己的经验,并且都有收获。为了在收获中进行不断的提高,来!一起进入今天的挑战环节。(任选一题或多题)
1、某个钟表的时针长10厘米,从9时到12时。
☆(1)时针针尖走过了多少厘米? ☆(2)时针扫过的面积是多少?
2、拥军社区修建一个圆形花坛,直径是8米,在花坛周围又修了一条宽1米的环形小路。(π≈3)
☆☆(1)小路的面积是多少?
☆☆☆
一、“圆的周长”公开课片段描述
师:圆周长与什么有关?
生:(各自发表意见,最后统一认识,圆直径与圆周长的关系很密切. )
师:我们来研究圆周长与圆直径有什么关系? 由老师提供圆的模型. 同学们以四人小组为单位,先讨论一下,你们计划怎样测量圆的周长和直径?
生:四人小组讨论测量计划.
师:讨论好的小组上来领圆的模型. (课件显示下面的空白表)
生:进行测量.
师:请各小组派代表把测量结果告诉大家.
生汇报测量结果,师记录:
师:观察同学们的测量数据,思考圆周长和圆直径有什么关系?
生1:圆周长是圆直径的3倍以上. (教师微笑着点头)
生2:圆周长是圆直径的3.14倍. (教师点头,但显得有些尴尬)
生3: 圆周长是圆直径的3~4倍. (教师再次微笑着点头)
师:数学家经过许多次的实验发现,任何一个圆的周长都是它自己直径的3倍多一点,而且测量得越科学这个倍数就越精确,我国很早就计算出圆周长是圆直径的3.1415926倍.
在这个教学片段中,有两个细节,细节1:某小组测量圆周长,得到的数据是6.28 cm. 细节2:在“观察测量数据,思考圆周长和圆直径有什么关系? ”时,生2回答“圆周长是圆直径的3.14倍”.
细节1,学生用尺测量圆周长时,以厘米为单位能精确到百分位吗? 且百分位上的数恰好是8,使圆周长与圆直径的倍数暗合 了 π 的近似值3.14. 如果圆周 长6.28厘米是用3.14×2倒导出来的 , 那学生就没有经历测量数据的数学过程, 而且教师还默许了学生对数学探究活动弄虚作假的态度;细节2,里面蕴含着从特殊到一般的不完全归纳的数学思想,学生2就不可能感悟到这一数学思想.
以上这样的情境我们 很多教师 或许都曾 经历过. 自己“精心 ”预设的教学过程 ,有些同学却 “不屑一顾 ”,而且非常自豪、迫不及待地表达出了最终结果. 遭遇这样的意外,使我们的教师有些措手不及,一般都会采用“忽略”“继续”的办法.之所以采用“忽略”“继续”的办法,我想原因有三:第一,学生测量的数据和回答的答案是3.14,并没有明显的错误,只是它太“完美”、太“准确”,令人有些难以相信,所以可以忽略.第二,教学要面向全体学生,对于不了解 π 的同学,需继续学习,使他们对 π 的产生有一个完整的认识过程,所以要继续.第三,面对课堂上突发的意外,当没有好的策略,而且想尽力完成预设的教学计划 (自己精心预设的教学计划不能完成,总是舍不得),所以也只能采用“忽略”“继续”的办法. 教师充分准备、精心预设的教学过程在实施时被学生“破坏”或“打乱”是在所难免的,而且在新课程改革的过程中这种现象有可能会越来越多. 一方面,新课程改革倡导师生平等、教学民主,要给学生创造充分发挥和施展的空间,这使得教学过程更加开放,更具有不可预测性;另一方面,我们学生获取知识的渠道更加丰富, 家长对子女的培养更加重视. 我们学生到底掌握了哪些知识,到了哪个思维水平,教师很难准确地预见到.
虽然课堂上的“意外”很难预见,但倘若发生了,又必须很好地解决,那当我们的“预设”在课堂上遭遇“意外”时该怎么办呢?
二、面对思考作出的选择
“意外 ”发生前预设试探. 在 “意外 ”发生前预设试探性的内容,准确掌握学生的真实情况,既可以将“意外”消灭在萌芽状态,又可以及早思考利用“意外”的策略.
(1)试探的方式 . 1提问试探 : 用开放性的问题 , 了解学生对学习内容相关知识的掌握情况. 2谈话试探:通过轻松、真诚的师生谈话, 了解学生对学习内容的已知情况. 3活动试探:用数学活动,了解学生真实的数学水平.
(2)试探的目的. 试探的目的主要有三个 :1试探学生对学习内容相关知识的掌握情况;2试探学生对学习内容已知的水平;3试探全班学生对学习内容已知水平的分布情况.
(3)试探的实例.
1实例A———提问试探, 了解相关知识:“圆的周长”在引入阶段设问. 同学们对圆的周长有那些了解? 还想知道些什么? 通过前一个问题的提问,对于文首“圆的周长”教学片段中出现的意外就能提前探测到,那些对圆周率 π 有所了解的学生肯定会在这儿表现出来.
2实例B———活动试探,了解分布情况:“多位数的读法”导入阶段
师:请同学想好一个比一万大的数.
学生想.
师:请把你想好的数写到黑板上来.
许多学生上来写.
师:黑板上有哪些不是比一万大的数,我们把它们擦去.擦去小于等于一万的数(包括大写的数).
师:请大家读读看,你认为能读的就上来读给大家听.学生读.
师:说说你是怎么读的?
学生介绍读法.
【小学数学教案:圆的认识】推荐阅读:
小学六年级数学圆的认识教案03-12
小学数学圆的面积教案11-07
初中数学圆的认识12-14
小学数学六年级上册《圆的周长》说课稿01-22
小学六年级数学《圆的周长》的优秀说课稿06-10
人教版六上数学《圆的认识》单元知识点07-27
小学数学认识10教案02-21
小学三年级数学认识小数教案07-06
小学一年级数学认识位置教案设计07-17
小学数学三年级上册《认识角》教案01-25