国内外隧道及地下工程的发展现状

2025-04-24 版权声明 我要投稿

国内外隧道及地下工程的发展现状(精选6篇)

国内外隧道及地下工程的发展现状 篇1

法国、英国、瑞士、奥地利、挪威、日本等发达国家,在21世纪已建成一批特长隧道,还有许多特长隧道在建设或在规划中.21世纪前10年中,我国将有总长155km以上的公路隧道要投入建设,3km以上的特长隧道有数十座.在建和拟建的铁路中隧道含量很大,特长隧道数量很多.北京、上海、广州、深圳、南京、天津将投入巨资构建城市轨道交通网络.厦门将建一个可以全天候进出厦门岛的海底隧道’ 广东计划在深圳与珠海间建设一条30多公里长的海底隧道,还有拟建的6大跨海隧道’

我国已建成通车的铁路、公路隧道有95 00余座,总延长5200多公里;在建的铁路、公路隧道项目也很多,单是长度在10公里以上的隧道就有十多座;输水输气的隧道工程规模也很大;有已建成的和在建的LPG储油储气工程;已通车的城市地铁隧道总延长有200多公里;下穿江河及湖泊的各类用途的隧道已有十多条;在隧道及地下工程技术上我们有了较大的进步,克服了许多不良地质难题,甚至在地质禁区也能成功地建成隧道,形成了门类齐全的工法技术。更可贵的是有了相当数量的隧道及地下工程建设的管理技术骨干和专业设计、施工队伍。但是,我们也应该看到发展中所存在的间题和不足,尤其是在隧道及地下工程技术的运用程度和建设管理水平上与先进国家相比,还有较大的差距。譬如工程决策缺乏长远的和全面的考虑,缺少环境保护和工程经济的合理比较;产业化程度低,施工机具、设备和建筑材料品种稀少、品质低劣;大型施工专用设备如盾构机、TBM掘进机、液压凿岩台车及其关键配件等仍依赖于从国外进口;建设管理十分落后,表现为工程质量水平不高,质量稳定性差,施工安全没有保证,人身事故率高;施工队伍专业化水平低,尤其施工现场上较高素质的管理技术人才奇缺,施工机械化水平、信息化水平普遍较低。这些与国家快速发展的经济形势对隧道及地下工程建设的需求是不相适应的。

1)我国交通隧道的建设有3个非常明显的趋势:一是需修建的长隧道越来越多,长度越来越长;二是以隧道方式跨越江、河、湖、海水域的工程越来越多;三是城市隧道和地下铁道的建设将迎来高潮.3)在隧道施工技术方面,从20世纪六七十年代钢钎大锤作业的施工方法,到80 年代推广应用“新奥法”,20世纪末又引进了大型隧道掘进机(TBM),从液压凿岩台车的应用到隧道掘进机的引进,以及在地铁隧道和城市隧道中广泛采用盾构法,隧道施工技术有了很大进步,有些方面达到甚至超过了国际先进水平#

国内外隧道及地下工程的发展现状 篇2

隧道及地下工程渗漏水是长期以来困扰专家们的一个头痛问题,也是当前地下工程建筑中突出的质量通病和亟待解决的课题。据铁道部工务部门2002年秋检数据统计:我国至2002年底,共有铁路隧道5 711座,总延长2 833 km,严重渗漏水隧道有1 620座,占总座数的28.4%。交通部有关部门2002年数据统计:我国至2002年底,共有公路隧道1 700座,总延长704 km,严重渗漏水隧道达500余座,占总座数约30%。同时,我国北京、上海和广州的城市地下铁道中,渗漏水情况也已在30%左右。在地下工程较发达的日本,据调查渗漏水也达到30%以上。由此可见,既有隧道及地下工程渗漏水的情况十分严重。

以上情况产生的根源是什么呢?笔者对200余座隧道及地下工程防水体系的失效原因进行了统计分析,分析数据表明:由于施工原因导致渗漏水的占34.2%,设计不合理占10.4%,防水材质在不同水环境条件下变异占33.1%,结构变异致使防水体系失效占11%,维修养护不善占2.3%。由此可见,发生渗漏的原因是多方面的,因此研究和分析这些原因将对提高地下工程防水质量起到重要的作用。

1 防水失效原因分析

隧道及地下工程防水体系失效性是指防水体系和材料在使用过程中,由于外部作用侵蚀破坏或内部材料弱化,抵抗地下水环境的能力减弱或全部丧失。分析和研究地下工程在不同地下水环境介质中的失效影响因素与机理、失效材料所产生的物质对周围结构体性能的影响、建立评价各种失效影响因素指标及失效检测方法,是地下工程防水体系应研究的重要问题。

1.1 防水施工原因

前述统计数据表明,防水施工阶段是地下工程防水失效的主要环节,对部分防水失效案例进行分析后发现,既有施工不精心和工艺方面的原因,也有施工管理和检测方面的原因,同时采用不同施工方法的地下工程,其防水失效原因也不尽相同。

1)复合衬砌隧道一般采用高分子防水板(卷材),其失效原因主要有:(1)防水卷材材质本身不能和喷射混凝土初衬密贴,安设时的冲击、背面突出物等易将防水板扎破,导致漏水;(2)板与板间的接合部是薄弱环节,稍有不慎会导致整个防水体系失效;(3)如遇混凝土壁面有较大空洞和凹凸的部位,二次衬砌的挤压及围岩变形会使防水板拉伸,特别是结合部位易发生断裂破坏。

2)喷涂防水的隧道及地下工程防水体系失效的原因有:喷涂防水膜很难保证其均匀性,虽然一般喷涂材料延展性较好,但抗拉强度较低,如发生较大外力作用,结构会发生变形和位移,易导致防水膜破裂,致使整个防水体系失效;另外该施工方法对喷涂的施工工艺精度要求高,但一般工程很难达到。

3)自防水混凝土的防水体系失效的原因有:地下工程工作面狭小,混凝土振捣密实度很难达到设计抗渗的要求,另外施工缝和变形缝也是这种防水措施的薄弱环节。

以上原因说明,防水施工过程是保证工程质量的重要环节,因此应强化防水施工的重要性,针对不同的防水方法制定相应的施工细则,并建立防水施工质量监测机制。

1.2 防水设计原因

一部分设计师对防水重要性的认识不够,认为地下工程渗漏水不影响结构的安全问题,在选用材料和设计方式上重视程度不够,因此在防水设计方案中结合结构特征认真研究不充分,致使防水设计不合理。

由防水设计理念问题引发的失效:目前地下工程使用寿命都在100年以上,而防水材料的使用寿命均达不到这一要求,因此地下工程防水设计应考虑防排水系统的可维护性和易更换性。

由防水设计经济性问题引发的失效:尽管防水工程在地下工程中占的工程总费用比例是较小的,但往往设计者考虑造价的原因,仍选用价廉质差的材料,也是导致防水失效的原因。

1.3 防水材料变异原因

根据笔者的研究,发现由于防水材料材质的变异导致防水体系失效的情况占有较大的比例,其原因有地下水环境和微生物侵蚀对防水材料性能的弱化、已有防水材料材质固有的弱点随使用环境的恶劣和使用时间推移逐渐丧失防水功能。如:广州地铁某区间在维修时,发现修建时铺设的防水板已大部分腐烂;四川某公路隧道在整理渗漏水时,发现该隧道漏水的原因是防水板的连接处大部分已失效;某铁路隧道在维修养护时,其防水卷材已变质老化。发生这些情况,归纳起来,主要有以下原因:(1)劣质的混凝土添加剂中含有高浓度的碱性成分和不易分解的盐类物质,导致混凝土结构的松软,析出的物质对防水卷材起了侵蚀作用;(2)冻融交替使得防水材料结构变异;(3)微生物侵蚀、粘结材料变异;(4)地下水中含有不同浓度的酸、碱、盐离子对材料的侵蚀;(5)防水材料材质结构的不稳定性导致材料结构组织的变异。

1.4 工程结构变异原因

地下工程长期处于复杂的环境中,致使结构产生变异的不利因素很多,一旦发生变异,衬砌结构就会出现位移和变形、开裂、混凝土剥落等现象,进而使得防水体系失效。如由于围岩具有流变性,后期的围岩应力在长期的调整过程中可能会使防水板受到来自一衬和二衬的长期挤压,在基面不平整或有突出点处产生穿刺性损伤,造成防水层失效。在四季温差较大的场合,常年冻融交替,在冻胀力的强烈作用下,残余变形逐年积累,使衬砌结构位移和开裂,导致防水层逐步失效。结构本身材料劣化引起的变异,如混凝土碳化、盐害、碱集料反应等,其析出物也是造成防水体系破坏的原因。

1.5 维护和管理原因

排水系统堵塞、不畅时,如果维护不善,将导致较大的水压长期积累引起结构开裂,破坏防水体系。在严寒地区的隧道,冰冻产生的冻胀力是导致结构开裂和排水管堵塞破裂的重要原因,因此隧道及地下工程的维修养护是十分重要的。

2 主要的待研究问题

隧道及地下工程环境与其它建筑工程不同,作为附着层的高分子材料,影响其使用期间耐久性的因素是很独特的,除了一般的由温度、湿度、光照、酸碱环境作用等引起的材料老化和降解而失效外,还要考虑地下围岩和衬砌结构的长期相互作用产生的挤压、变形因素对防水体系产生的损害作用。

2.1 地下结构(围岩)环境不均匀变形对防水失效性的影响

地下结构(围岩)环境不均匀变形对防水体系失效起较大作用是众所周知的事实,其原因比较复杂,主要体现在地下环境特殊的外力(水压、冻胀力、塑性地压、围岩松弛地压、偏压、承载力不足、地震等)施加于结构,造成结构产生不均匀变形甚至开裂,致使防水层承受局部较大的压力、剪力和拉伸力的作用而破坏。隧道的拱顶是导致防水失效的主要部位,铁路和公路隧道这类案例较多,其原因是由于隧道拱顶混凝土浇注工艺的缺陷,衬砌与防水层之间很难密实,有的甚至存在较大的空洞。此处往往容易形成水囊并积聚较大水压,围岩松弛扩大,作用在衬砌上的地压增加,致使衬砌开裂漏水。

防水层由于地下结构环境不均匀变形所产生的破坏主要体现在防水层的物理性质上,也就是由于外界结构变化对防水层所产生的受力变化影响上。一旦某项力学指标超过了防水层材料的允许值,防水层的完整性将发生破坏,而造成防水层失效。另外,防水材料在受力的情况下,其耐久性也将发生变化,即防水材料的力学环境也将有可能加速材料本身老化或失效,这也是造成防水层失效的因素。

采用不同的防水方法,防水层在地下结构环境中所受到的破坏和影响程度是不一样的,因此研究在这些外力作用下,对防水层本身物理性能的破坏影响程度,据此来确定防水层和结构施工过程中需要相应采取的工程措施,对防止地下防水体系的失效有着重要的工程意义。

2.2 防水材料的失效性检测

隧道及地下工程防水体系目前选用的防水材料多为有机高分子材料,对其老化与失效的研究主要集中在高分子材料的光热老化、热氧老化、光氧老化、化学介质中的老化机理及稳定性方面[1,2]。对于地下工程防水材料而言,由于其处于密闭环境中,极少受到大气紫外线辐射作用,因此上述环境因素所产生的老化影响是次要的,主要的影响因素为环境介质即霉菌等微生物、水以及化学腐蚀性介质(酸、碱、盐)。

1)霉菌等微生物的影响:目前使用在地下工程中的防水材料种类繁多,其分子组成与结构有很大不同,高分子材料体系所加入的添加剂中含有不同的增塑剂及油脂类化合物,其中含脂肪酸结构的化合物极易感染霉菌,在潮湿恒温地下环境中,霉菌的分泌物会引起材料分解并转化为醇类和有机酸等物质,这些物质的存在为霉菌生长繁殖提供了养料,促进了霉菌向纵深发展,形成材料降解导致其性能失效[3]。

2)水的影响:隧道及地下工程中的防水材料与地下水是密切接触的,这种长期接触会在材料表面形成水膜,进而发展到水渗入材料内部,使材料内部某些水溶性物质和增塑剂中含有亲水基团的物质被溶解、抽提或吸收,从而改变了材料的组成而促使材料老化甚至使得材料功能失效[3]。

3)化学腐蚀性介质的影响:地下工程中通常遇到的腐蚀介质有混凝土中析出的强碱和盐等,或地下水中含有的腐蚀性化学元素。当高分子防水材料与这类化学腐蚀性介质接触后,它们之间的作用比起高分子材料的光氧化、热氧化等要复杂得多[3]。由于介质的渗入,腐蚀性介质一方面对高分子材料内部的低分子物质发生溶出和抽提作用,使高分子材料发生膨胀、软化或溶解,另一方面又可以与添加剂发生系列的化学反应,最终导致材料外观改变和物理性能下降,使材料所具有的功能逐渐失效[4]。

上述情况表明,研究隧道及地下工程防水材料失效性具有相当的难度,建立相应的检测手段和评价体系需要进行大量艰巨的工作。目前我国采用的自然环境老化实验和人工加速老化实验方法,虽然可在室内模拟环境条件,并通过强化某些因素进行快速累计试验(如强酸、强碱、各种浓度盐溶液等化学腐蚀性介质对材料的腐蚀老化,无氧高压力下微生物的繁殖以及对材料侵蚀,在流动介质作用下的冻融实验等),能在短期内获得材料老化失效实验结果,但针对地下工程特定领域材料的失效特点及机理很难做出定量评判。国外同行学者认为,地下工程防水使用的高分子材料在使用的过程中宏观物理性质发生了不可逆转的变化,其主要原因是由于高分子材料内部微观结构发生改变。因此,提出微观分析方法是探讨高分子材料失效机理的重要途经,其研究的手段是采用FTIR、UV等技术研究腐蚀性介质中高分子主链结构的变化;采用NMR、GC、GC-MS等技术对降解产物进行分析;利用AFM、SEM、TEM、XRD等设备考察高分子材料形貌的变化情况;结合高分子材料在失效过程中所发生的力学性能变化(如拉伸强度、断裂伸长率等)得出材料可能的降解程度和失效机理,所得的实验数据既可比较不同材料的失效程度及机理,也可作为评价材料失效程度的量化指标[5,6,7,8,9,10,11]。

2.3 隧道及地下工程防水的工程检测

隧道及地下工程所采取的防水方法不同,对各项施工工艺以及力学、物理、化学指标的要求也不同;不同的使用环境,影响因素差异也较大,因此检测项目、检测指标以及检测方法也相应不同。隧道及地下工程的设计寿命期远远长于一般建筑工程,其防水工程的寿命与使用年限应是同样的尺度,因此,也要求对防水材料的工程性和耐久性有一个科学适用的检测方法。

2.3.1 防水工程失效性检测内容

隧道及地下工程防水失效原因可分为两类:一类是基于施工方法与工艺的建设期影响因素,另一类是工程建成后的使用期耐久性因素。前者主要与施工方法、施工管理有关,应对各种防水方法细化施工规范与操作规程,重点主要集中在现场施工管理、施工工艺以及质量监控等方面。而后者引起的失效问题则难以控制,由于地下工程特点,施工后难以检测,发现问题难以修补,影响失效性的因素很多,往往在工程交付使用后较长的时期才出现防水失效,这些都是防水工程检测应研究的重点。

使用阶段发生防水失效因素可分为两类:一类是外界环境条件造成材料失效,另一类是材料自身缺陷或质量问题造成失效。前者包括水作用,含有酸、碱、盐腐蚀性介质的水质的侵蚀,微生物的腐蚀,地下工程力场作用的破坏,大气环境以及时间的作用导致高分子等有机材料的降解等,此类因素本文前已论述。后者是材料在生产、运输、储藏过程中产生偏差造成的,属于质量问题。因此,检测的目的一是针对材料的性能鉴别能否满足防水使用年限要求,二是检测材料是否满足质量控制要求。

2.3.2 现行检测指标分析

目前我国针对工程进行的耐久性检测中,高分子防水卷材检测指标主要有:常规检测指标(外观及尺寸、拉伸和撕裂强度、伸长率、热处理尺寸变化率、低温弯折性、抗穿孔性、不透水性、剪切状态下的粘合性)和耐久性检测指标(热老化处理、耐化学侵蚀、人工气候加速老化)两大项。喷涂材料还要增加喷涂材料与潮湿基面的粘结强度、表干和实干时间、加热伸缩率等项[12,13,14,15,16]。

常规检查部分可以直观地反映材料的物理力学性能,如果这些指标合格,一般认为可以满足隧道及地下工程建设阶段对材料质量控制的要求,目前已将其作为隧道工程使用期围岩变形时防水材料抵抗失效能力的基本判定。耐久性指标主要反映高分子防水材料的耐腐蚀性和抗老化能力,其中除耐化学侵蚀检测具有针对性外,其他两项对隧道及地下工程这类特殊建筑是不适用的。根据笔者前述对国内200座隧道的调研结果分析,发现防水层出现脆化、粉化破坏现象的隧道使用期都在5~20年,其防水失效期还要低于这个时间,由此可见现有材料耐久性指标的设置检测项目及其相应的检测方法是有缺陷的。如霉菌和微生物的生物侵蚀作用、基岩与衬砌间基于围岩缓慢变形产生的挤压作用、地下结构混凝土析出物的腐蚀作用、电及流动介质对高分子材料老化作用等因素导致的失效机理还未被充分认识,还没有评价的指标和检测的手段,

另外由于不同的防水卷材、喷涂材料的施工方法、工艺要求、防水作用机理方面有着显著差别,检测标准与方法也会不同,这不仅在于各检测项指标的取值,检测理论与方法也会不同。统一的标准难以反映材料的特点与特长,尤其是一些专用于某种特定环境的防水材料,更需要有专门的检测方法。

隧道及地下工程防水的耐久性问题要比一般建筑复杂,套用常规防水材料的检测指标和方法,并不能反映材料的真实耐久性,这些需认真研究并解决。

3 结语

隧道及地下工程建成后防水的失效性状况不易直接观测和定量检验,且状况复杂多变,加之岩土体具有非均质性和流变性等特点,地下环境对材料的不利影响也难以确定,很难模拟防水材料的实际破坏规律,因此国内外对隧道及地下工程防水失效性的综合研究工作开展较少。目前国内虽然对防水材料在常规条件下单项失效性指标已有所研究,但仅局限于其中基本的理化指标,间接地反映材料耐久性性能,没有全面和针对性的检测标准指标体系,也没有在符合现场实际情况的复合影响因素作用下进行隧道及地下工程防水的失效性研究。

目前防水材料与施工技术多元化发展进程加快,各种新型防水材料不断涌现,如水性防水涂料、水性喷膜防水材料、干粉喷涂技术等新型环保性材料的出现,其服务领域面向隧道及地下工程时,现行标准不能真实反映其耐久性性能,而这些材料和技术的企业标准也没有系统、科学地解决耐久性问题,在其他各种建筑防水材料的单一国家标准、行业标准、部门标准、企业标准中,也均未综合、全面地建立失效性的评价技术体系。

国内地下管线立法现状及趋势研究 篇3

1 国内地下管线相关立法概况

目前,涉及地下管线的法律有19部、行政法规有共有16部,部门规章有7部、专门的地下管线地方性法规有3部、专门的地下管线地方政府规章12部。除了专门的管线管理立法外,各地的市政工程管理立法、管线档案管理立法、道路挖掘管理立法也都对管线管理做了部分规定。较为特殊的是,某些城市还针对地下管线盖板、地下管线规划、管廊做了专门的规定。

2 地下管线立法的发展趋势

2.1对地下管线立法的层级會提高,效力也相应增加

由于各地地下管线立法长期以来以市政设施或地下工程规划立法、地下工程档案立法为主,缺乏统一的地下管线地方立法,导致管理的法律依据缺乏,各部门间各自为政,无法形成统一有效的管理流程,事故频发,损失严重。近年来,随着各地对地下管线工作的重视,各地的地下管线立法开始逐步加大力度。各地纷纷推出统一的地下管线管理立法。对于具有地方立法权的城市而言,以地方性法规或规章的方式推出地下管线立法,对于统辖辖区内的管线工作,提高管线的法治化,协调行业立法具有重要的作用。但对于缺乏地方立法权的地域而言,地下管线工作同样重要,且由于缺乏管理依据,存在更大的事故隐患。因此,推出全国性的统一立法有助于解决这个问题,能在全国覆盖和适用,对所有城市地下管线的管理都能起到约束作用。未来,地下管线立法的层级會逐步提高,其效力层级也會随之提高,从而加大拘束力和执行力。

2.2形成闭合管线管理环节和流程,改变多头管理现状

由于地下管线涉及的管线种类和行业众多,涉及管理的相关职能部门也十分繁杂。多头管理往往造成不协调或相互扯皮的状况,因此多数地方对地下管线的管理都以一个部门为主,并赋予其必要的协调权,由其和其他职能部门和行业机构进行协商、协作。各地一般都以规划行政主管部门或建设主管部门牵头,统筹管理地下管线相关事项,将管理重点落在工程规划许可、施工许可等前置环节,同时通过各种制约机制,如将查询义务的履行作为发放工程规划许可的前提、将档案部门的验收作为竣工备案的前提等,将管线管理的各个环节进行串联等,加大管理的时效。在协调与其他部门的职责范围时,将其他部门的管理节点也纳入整个管理流程,如行业管理部门的同意、道路管理部门的许可,都统一写入地下管线管理法,要求在施工设计阶段,由各行业部门进行联合确认,形成保护协议,对于其他部门掌握的管线工程信息进行各部门互通,从而确认管理流程是否存在缺失,形成一个闭合的管线管理环节,提升管理效率。因此,各管线行业立法的相关规定也都會整合入统一的管线立法中。

2.3管线普查常态化,信息系统将是未来管线管理的核心

随着科技的日益发展,传统的行政管理模式受到越来越多的挑战和冲击。在地下管线管理领域,基于可视化技术和数字科技的最新成果,管线信息系统可以起到数据存储、查询、辅助决策、精确管理流程、预测预警等各个层面的作用,大大提升管线管理的效率,甚至将成为管线管理的中枢和核心。现在多数城市都在发展依托城建档案系统的管线信息系统,但其作用还十分有限,在信息的时效性和应用上还有待进一步深化挖掘。

管线信息系统的构建一方面需要管理者通过大量的资金投入和政策引导进行开发推广,另一方面又會重塑管理的模式和流程,改变管理本身的面貌。因此将来的立法应为信息系统的广泛应用预留空间。就信息系统的开发主体、应用范围、查询模式等问题进行预先规定。

此外,地下管线信息普查是摸清家底的重要手段,普查结果将成为各级政府管控地下管线现状、制定管线发展规划的总要依据。因此,未来的地下管线普查应成为常态化、制度化的工作,會逐步构建定期普查的制度。

2.4注重地下管线的运营模式,鼓励社會资本的投入

地下管线作为最基础的公用设施,对其投入和发展一般都是各级政府本来的义务,然而,由于管线工程的投资大,风险较多,成本高昂。随着将来对地下管线管理的进一步规范化和建设标准的进一步提高,管线工程的成本會进一步加大。因此探索管线的社會投融资模式对于减轻政府负担,提高建设、运营效率至关重要。

目前对于管线的立法还是集中在管理和风险防范上,对管线的投融资模式的探索不多,仅有一些概括性的表述。已有的对管线投融资模式的研究也主要集中于管廊,其盈利模式和合作方法还有待进一步深化。与道路工程或地下空间开发绑定的投融资模式,以及着眼于建设、运营、维护全流程的管线生命周期式的合作与监管是未来这块探索和研究的方向,也应体现于未来的管线管理立法中。

工程地质在隧道与地下工程的关系 篇4

工程地质学:工程地质学是一门介于地质学和土木工程学之间的应用地质学科,它是运用地质学的原理、方法,结合数理力学及土木工程学知识,分析、解决与人类工程和生活活动有关的地质问题。

也就是说,工程地质学这门学科,它的基础是地质学,我们首先应该学习的东西就是各种地形地貌、岩石产状、地质形态、构造运动等等一系列地质知识,当然这些不是单纯为了学习了解地质,而是为我们接下来所需做基础铺垫。我们隧道与地下工程专业,从大学科分类属于建筑类。所谓根深蒂固,也就是说一棵大树它要稳稳的屹立不倒必须有深厚的根基。而建筑工程,它的根基便是深深贴近着大地,只有将这根基做好做牢我们的建筑使用也才会有保障。这就是告诉我们,首先我们在做建筑工程之前,必须选一个适宜的地质环境,然而事实证明我们做工程过程中不可能不或多或少遇上一些不适宜在之上做建筑的地质,这就要求我们,必须用一种方法乃至要考虑数种方法来解决这些地质问题多带来的工程不便甚至危害。工程地质学,在一方面教授我们地质学常识,另一方面与工程相结合,运用地质学的原理、方法,结合数理力学及土木工程学知识,分析、解决与人类工程和生活活动有关的地质问题。公路工程是线型的建筑物,隧道是其中的关节部分,穿越不同的地质、地貌单元要求我们必须对地质环境有很深的探索和理解,使得工程建设减少地质制约,同时也不破坏环境。隧道及地下工程是从事研究和建造各种隧道及地下工程的规划、勘测、设计、施工和养护的一门应用科学和工程技术,是土木工程的一个分支。隧道及地下工程也指在岩体或土层中修建的通道和各种类型的地下建筑物,包括交通运输方面的铁路、道路、运河隧道,以及地下铁道和水底隧道等;工业和民用方面的市政、防空、采矿、储存和生产等用途的地下工程;军用方面的各种国防坑道;水利发电工程方面的地下发电厂房以及其他各种水工隧洞等。一切工程与大地接触,地质问题直接的影响我们工程的施行,在不同的地质条件下,选用不同的施工技术,或者说因地制宜,都学要我们对地质知识深入了解,对地质勘测深一步应用。例如,中国在云、贵、川及闽、浙一带可以有选择地利用天然溶洞;在西北黄土高原可利用喷锚支护和加强通风照明来修建窑洞民居。当然,在一些特殊地质,或者说不利地质,我们也必须使用恰当的施工方式是工程达到最优,例如,在软土地层中,采用适合地层条件的盾构、顶管、沉管和连续墙施工方案;在硬岩中采用新型掘进机或高效水钻台车,以及光面爆破和预裂爆破等先进技术。在一些长隧道中采用水平钻井已取得成功。以喷锚支护为基础的新奥法施工,可大力推广。

隧道与地下工程施工一般分为两大步:勘测设计和施工。勘测设计:隧道位置的选择一般应服从路线走向。由于隧道工程数量、造价、工期控制等因素,隧道位置在选线方案中是经济技术比较的重要组成部分。对不良地质地段的隧道,特别是长大复杂隧道线及全线或局部线路方案的成立与否,必须精心勘测设计。通过对隧道位置所处的地形、地质、水文等要素的测绘、勘测、测试及综合评定,设计正洞和明洞的长度和结构,决定施工方法,设计辅助坑道、排水系统和附属工程。可以知道这个过程实际上就是,其一是人文需要,也就是我们的需求建设需要;其二则是工程施工需要,找到合适地质环境施工减少造价和施工困难,这主要依靠我们工程地质的知识。第二个过程,施工过程,更是直接在地里面作业,很多应急情况都学要我们技术人员运用各方面只是解决问题,其中工程地质起到了重要作用。由此看来,整个隧道和地下工程的施工,不论是前期准备还是中期施工乃至后期完善都需要用工程地质知识,贯通其中使得工程取得最优效果。由此可见,在隧道施工的过程里,隧道施工地质工作内容包括:超前地质预报;施工围岩分级及稳定性评价;灾害评估及防治工程措施建议;竣工图及报告等4项内容。超前地质预报是隧道施工地质工作最主要的工作内容:资料收集、地质素描、洞内外水文调查、监测测试、超前地质预测、综合超前预报和成灾警报等六项任务。下面我们从一个隧道施工设计实例中看看其中涉及的众多地质知识。

高边坡改隧道设计中的地质问题及处理建议

赣粤高速公路泰赣段C4标段高边坡位于遂川县巾石乡境内,杨公山隧道的南洞口附近,路线桩号:K203+557~K203+779.原设计为5级高边坡,一、二级坡高各为10米,设计坡率为1:0.25,不设防;第三、四级坡高各20米,设计坡率1:0.5,预应力锚索锚固支护,第五级坡高26米,设计坡率1:0.75,设计支护为锚喷。目前第四、五级边坡开挖、防护均已到位,第三级开挖、防护已部分到位,第一、二级边坡部分开挖。开挖过程中,发现山体地质情况比较复杂,边坡较陡,存在安全隐患,从安全角度考虑,组织对该高边坡的稳定性进行重新分析论证,确定采用单幅隧道方案通过。

1、工程地质条件及评价

1.1 地形地貌

建设场地位于杨公山隧道南洞口附近,与杨公山隧道相隔一条山涧,山体天然植被发育,山势陡峻,山顶标高达430米,山麓标高为250米,山体自然边坡是西南侧陡,西北侧缓,与岩层倾向一致,顺向坡缓,反向坡陡,最陡达59°。路线自山体的西侧山腰近山麓处左深切山体。边坡侧山体平均自然边坡坡度为33°,最陡为45°,最缓为25°。

1.2 地层岩性

建设场地地处巾石至新村花岗岩岩体的东北缘,系属巾石至碧洲复式向斜的南段西北翼。区内地层为寒武系上统水石群变质岩系(ε3)和第四系全新统残坡积层(Q4el+dl)。寒武系地层为一套区域浅变质岩系,地层总体产状为55°∠22°,地层受多期地质构造运动的作用及岩浆侵入影响,地层在区域变质的同时,受岩浆的烘烤交代接触变质作用,区域地层处于混合岩化带,主要表现为局部出现少量团块状、透镜状及不规则状伟晶质和细晶质脉体,开挖后出现的“孤石状”岩体,可能是混合岩化成因,隧道区内该套地层根据岩性组合可分为二大层。⑴ 板岩层:以黄绿色斑点板岩、粉砂质斑点板岩为主,夹厚层状灰黑色变余长石石英砂岩,风化强烈,岩体呈碎裂结构,夹交代石英质脉体,呈“孤石”状。⑵ 变质砂岩层:青灰色~灰黑色,厚~巨厚层状变余长石石英砂岩,变余凝灰质砂岩为主,夹厚—中厚层状粉砂质斑点状板岩、变余砂岩。受多期构造运动的影响,岩石节理裂隙发育,自下而上,岩体呈层状块体结构变为层状碎裂结构。

1.3 地质构造

区内受东西向华夏和北东向新华夏系构造的影响,构造较发育,热液活动也十分频繁。区内构造以断裂构造为主,褶曲不明显,具体见构造体系及各构造体系所表现的应力方向。主要

地质构造形迹有:⑴巾石——碧洲倒转向斜构造,⑵新村——弹前花岗岩侵入体,(3)禾沅——万安大断裂。区内在加里东构造运动时期,以南北向的水平挤压为主,逐渐形成南北方向的华夏系构造。随着时间的推移和南北向扭动作用的加强,燕山晚期区域主应力方向也由北西——南东向逐渐转为北西西——南东东向,因而形成了现在的北北东向新华夏系构造。由于早期构造地应力在断层形成过程中被释放,根据杨公山隧道施工观察,本隧道的设计和施工无需考虑构造地应力的影响。对设计施工有影响的主要是由重力作用产生的地应力,特别是偏压作用。通过地质断面调查及钻取岩芯分析,勘察区的岩体最少发育两期节理裂隙,裂面有高倾角、压性闭合或微张开等特点。早期节理裂隙一般被石英脉充填,呈胶结状,有较高的抗剪强度;后期裂隙多呈“X”节理,由于其多向切割,岩体多半比较破碎。通过节理统计及“节理裂隙玫瑰图”分析,得出主要发育的几组优势节理面为:a、走向北85°西,倾向北,倾角45°~65°,与路线近垂交;b、走向北82°东,倾向北,倾角45°~65°,与路线近垂交;c、走向北5°~24°西,倾向西,倾角65°~85°,与路线近平行,对隧道围岩稳定性影响较大。隧道围岩中的节理裂隙是影响其稳定的主要因素,岩层面只对右侧洞壁有影响。节理裂隙又以平行洞轴线的、后期的节理裂隙面影响最大,K203+590~K203+670段隧道右侧洞顶附近发育1.5米左右厚的构造破碎带,对隧道拱顶稳定不利。由于隧道所处的位置,地形起伏大,岩体风化分界线起伏也大,节理裂隙一般洞顶比洞底发育,洞右侧比左侧发育,同一掌子面出现岩体完整性差异,所以,设计和施工应引起重视,采取针对性工程处置措施。

2、围岩分类与支护分析

2.1 围岩参数的确定

⑴ 岩体声波速度根据P-S测井获取纵波、横波;

⑵ 岩土完整性系数:I=Vp2 / Up2其中: Vp为岩体纵波波速,Up为岩石纵波波速;

⑶ 泊松比根据波速计算确定:μd=Vp2-2Vs2/[2(Vp2-Vs2)];

⑷ 动弹性模量根据下式计算确定: Ed=ρVp2(1+μd)(1-2μd)/[g(1-μd)]或Ed=ρVs2(3Vp2-4Vs2)/(Vp2-Vs2)其中:ρ为密度 g为重力加速度;

⑸ 静弹模量:Es=0.1Ed1.43;

⑹ 饱和抗压强度采用最小平均值确定。

2.2 隧道围岩分段划分及建议支护

2.2.1 K203+557~K203+610(北洞口及洞身)

围岩岩性为变余砂岩夹板岩,风化强烈,节理裂隙很发育,可见4组以上节理裂隙,多呈“X”型,岩体较破碎。拱部无支护时可产生坍塌,侧壁有时失去稳定,围岩类别综合定为Ⅱ类。建议:采用导坑法或台阶法施工并及时采取超前支护措施,洞口段适当接部分明洞。

2.2.2 K203+610~K203+680(洞身)

围岩岩性为弱~微风化变余砂岩,局部发育构造破碎带。围岩总体较完整稳定,局部呈碎裂结构,由于隧道浅埋偏压,左侧岩体坚硬完整,右上部洞室围岩范围内,岩体比较破碎。拱部无支护可能产生坍塌,侧壁基本稳定,围岩类别综合定为Ⅳ类。建议:施工采用先拱后墙法施工,对于施工中可能发现的局部破碎带、断层软弱破碎带,应局部特殊处理。

2.2.3 K203+680~K203+750(洞身及南洞口)

围岩岩性为以全、强风化千枚状粉砂质板岩为主夹变余砂岩及石英脉体,风化强烈,岩体软硬不均,总体较软,地下水较丰富。围岩横、纵向变化均比较大。右侧洞壁较薄甚至裸露,岩体风化呈土夹石状,左侧洞壁稍好。围岩易坍塌变形,处理不当会产生大坍塌,右上角地表可能出现塌陷。右壁处理不当易出现大坍塌,围岩类别综合定为Ⅱ类。建议:采用单壁导坑法或正台阶法施工或暗洞明做,开挖前必须进行超前支护处理,洞口和洞顶应采用

长导管超前支护,洞壁采用深孔注浆阻水和抗偏压,确定开挖期间洞室的稳定,开挖后喷锚支护并衬砌。对于洞壁较薄段应考虑接明洞通过。

2.2.4 K203+750~K203+779(左侧高边坡)

本段上部20米左右千枚状粉砂质板岩夹变余砂岩全强风化层及其残坡积土,岩体风化呈粉土状,且处于地下水出露带,地下水比较丰富,土体抗冲刷能力差。局部下部切入强、弱风化变余砂岩,呈碎裂结构,边坡岩体总体偏软且破碎。建议:边坡不陡于1:1,部分锚杆强支护,注意坡体及地表排水设置。考虑到进口段坡体稳定性差,建议接长明洞处理,确保运营安全。

在这个材料中,我们可以先从其中找出此次地质的相关问题包括了:地形地貌、地层岩性、地质构造、围岩分类与支护分析。这些材料为此次高边坡改隧道设计中起到了至关作用,其一分析了它的地质条件,发现山体地质情况比较复杂,边坡较陡,存在安全隐患,从安全角度考虑,组织对该高边坡的稳定性进行分析论证,确定采用单幅隧道方案通过。并且分析了每一段的岩石产状,确定了两洞口、洞身及左侧高边坡的处理方法,为此次隧道的设计以及施工做了很好的准备。总的来说,隧道处于山体斜坡处,地质构造相对复杂,洞身左侧埋深在22左右,右侧最大埋深在13米左右,隧道属于浅埋偏压型短隧道,设计和施工中应充分考虑这方面因素。隧道开挖爆应采用控制爆破(光面爆破或预裂爆破),尽量使围岩少受损伤,以免爆破过大,产生过量费方,影响施工进度,同时影响上部现有边坡的稳定。隧道围岩分类,是综合钻探、物探及地质调绘等成果确定,在隧道开挖过程中,若发现围岩类别划分不准确时应根据施工实际情况进行及时的调整。作为“新奥法”的重要组成部分,隧道施工必须进行施工监测。

隧道与地下工程施工技术与管理 篇5

——土木工程施工论文

姓名:学号:

摘要:简要介绍我国现行的隧道及地铁的施工工艺,并简介我国自行研究开发的地下结构工程的施工的新型工艺技术。展望我国未来的地下结构建筑发展方向并提出施工技术方面的需求和注意。

关键词:隧道;地下建筑;施工技术

一、简介

随着科学技术和经济的发展,在地上建筑高度比拼的同时,地下空间的开发也成了建筑师们钟爱的方向。近年来我国一批大型基础设施建设工程的落成为地下工程的设计施工提供了大量实验基础和施工经验,如青藏铁路的开工建设和顺利实施,为解决高原冻土区地下工程的施工提供了良好的试验基础;同时,城市地铁工程的建设也对解决复杂城市地质环境条件下地下工程施工提出了新的挑战;而大型桥梁、跨江隧道和海上设施的建设使水下的地下工程施工面临更高的技术要求。一系列大型基础设施的建设并完工极大地促进了地下工程施工技术水平,及时总结和完善这些地下工程施工新工艺和其他技术成果将为今后的地下工程施工提供良好的技术支持和保证,对推动我国地下工程的施工带来巨大的促进作用。

二、施工方法

我国现行的地下隧道的施工方法主要以下几种:

(1)、新奥法

新奥法是新奥地利隧道施工方法的简称, 在我国常把新奥法称为“锚喷构筑法”。采用该方法修建地下隧道时,对地面干扰小,工程投资也相对 较小,已经积累了比较成熟的施工经验,工程质量也可以得到较好的保证。使用此方法进行施工时,对于岩石地层,可采用分步或全断面一次开挖,锚喷支护和锚喷支护复合衬砌,必要时可做二次衬砌;对于土质地层,一般需对地层进行加固后再开挖支护、衬砌,在有地下水的条件下必须降水后方可施工。新奥法广泛应用于山 岭隧道、城市地铁、地下贮库、地下厂房、矿山巷道等地下工程,是我国目前矿石隧道施工的主要施工方法。

当前,世界范围内应用新奥法设计与施工城市地铁工程取得了相当大的发展。智利的圣地亚哥新地铁线采用新奥法施工地铁车站,车站位于城市道路下7~9m, 开挖面积230m2,相当于17m(宽)×14m(高)。针对我国城市地下工程的特点和地质条件, 新奥法经过多年的完善

与 发展,又开发了“浅埋暗挖法”这一新方法,与明挖法、盾构法相比较,由于它可以避免明挖法对地表的干扰性,而又较盾构法具有对地层较强的适应性和高度灵活性,因此目前广泛应用于城市地铁区间隧道、车站、地下过街道、地下停车场等工程,如根据新奥法的基本原理,采用“群洞”方案修建的广州地铁二号线越秀公园站及南京地铁一期工程南京火车站站,断面复杂多变的折返线工程、联络线工程也多采用新奥法。

在我国利用新奥法原理修建地铁已成为一种主要施工方法,尤其在施工场地受限制、地层条件复杂多变、地下工程结构形式复杂等情况下用新奥法施工尤为重要。

(2)、盾构法

我国应用盾构法修建隧道始于20世纪50~60年代的上海。最初是用于修建城市地下排水隧道,采用的是比较老式的盾构机(如网格式、压气式、插板式等),80年代末、90年代初开始采用土压式、泥水式等现代盾构修筑地铁区间隧道。盾构法具有安全、可靠、快速、环保等优点。目前,该方法已经在我国的地、铁建设中得到了迅速的发展,也是我国目前城市隧道施工的主要施工方法。

随着盾构法研究的深入、工程应用的增多,盾构法施工技术以及盾构机修造配套技术也得到了发展提高:上海地铁隧道基本全部采用盾构法修建,除区间单圆盾构外,还使用双圆盾构一次施工两条平行的区间隧道,此外还试验采用了方形断面盾构修建地下通道;采用直径 11.2m的泥水盾构建成了大连路越江道路隧道,这也是目前我国最大直径的盾构机。广州地铁采用具有土压平衡、气压平衡和半土压平衡模式的新型复合式盾构机成功应用于既有软土、又有坚硬岩石以及断裂破碎带的复杂地层的地铁区间隧道修筑,大大拓展了盾构法的应用范围。深圳、南京、北京、天津等城市虽然地质、水文条件各不相同,但采用盾构法修建区间隧道均取得了成功。

除了上述几点外,我国盾构技术的进步还表现在以下4个方面:①掌握了盾构机的选型和配套技术,与外国合作设计生产盾构机,配套施工设备包括管片模具完全能够自行设计制造;②掌握了盾构隧道的设计和结构计算技术以及防水技术;③掌握了盾构掘进控制技术,如盾构掘进参数选择控制、碴土和压力管理、地表沉降控制、盾构机姿态和隧道轴线控制、管片防裂、同步注浆等,实现了信息化施工,可以确保盾构施工的安全、优质、高效和环保;④掌握了不同地质条件和复杂环境条件下的施工及相关的施工技术。但同时我们也 应看到自己的不足。

(3)、浅埋暗挖法

经新奥法多年施工总结发展而成的浅埋暗挖法又称矿山法,起源于1986年北京地铁复兴门折返线工程,是国人自创的适合中国国情的一种隧道修建方法。该法是在借鉴新奥法的理论基础上,针对中国的具体工程条件开发出来的一整套完善的地铁隧道修建理论和操作方法。与新奥法的不同之处在于,它是适合于城市地区松散土介质围岩条件下,隧道埋深小于或等于隧道直径,以很小的地表沉降修筑隧道的技术方法。它的突出优势在于不影响城市交通,无污染、无噪声,而且适合于各种尺寸与断面形式的隧道洞室。它是一项边开挖边浇注的施工技术。其原理是:利用土层在开挖过程中短时间的自稳能力,采取适当的支护措施,使围岩或土层表面形成密贴型薄壁支护结构的不开槽施工方法,主要适用于粘性土层、砂层、砂卵层等地质。由于浅埋暗挖法省去了许多报批、拆迁、掘路等程序,现被施工单位普遍采纳。

浅埋暗挖法的核心技术被概括为 18字方针:管超前、严注浆、短开挖、强支护、快封闭、勤量测。其主要的技术特点为:动态设计、动态施工的信息化施工方法,建立了一整套变位、应力监测系统;强调小导管超前支护在稳定工作面中的作用;研究、创新了劈裂注浆方法加固地层;发展了复合式衬砌技术,并开创性地设计应用了钢筋网构拱架支护。

由于该工法在有水条件的地层中可广泛运用,加之国内丰富的劳动力资源,在北京、广州、深圳、南京等地的地铁区间隧道修建中得到推广,已成功建成许多各具特点的地铁区间隧道,而且在大跨度车站的修筑中有相当的应用。此外,该方法也广泛应用于地下车库、过街人行道和城市道路隧道等工程的修筑。

(4)、钻爆法

我国地域广大、地质类型多样,重庆、青岛等城市处于坚硬岩石地层中,广州地铁也有部分区段处于坚硬岩石地层中,这种地质条件下修建地铁通常采用钻爆法开挖、喷锚支护。钻爆法施工的全过程可以概括为:钻爆、装运出碴,喷锚支护,灌注衬砌,再辅以通风、排水、供电等措施。在通过不良地质地段时,常采用注浆、钢架、管棚等一系列初期支护手段。根据隧道工程地质水文条件和断面尺寸,钻爆法隧道开挖可采用各种不同的开挖方法,例如:上导坑先拱后墙法、下导坑先墙后拱法、正台阶法、反台阶法、全断面开挖法、半断面开挖法、侧壁导坑法、CD法、CRD法等。对于爆破,有光面爆破、预裂爆破等技术。对于隧道初期支护,有锚杆、喷混凝土、挂网、钢拱架、管棚等支护方法。及时的测量和信息反馈常用来监测施工安全并验证岩石支护措施是否合理。防水基本采用截、堵、排等几种方法,其中在喷射混凝土内表面张挂聚乙烯或聚氯乙烯板,然后再灌注二次混凝土衬砌被认为是一种效果良好的防渗漏措施。

同时,经多年的施工总结和发展,我国也研究开发出一批自己的地下施工新技术,包括在青藏铁路建设中大量运用的多年冻土区钻孔灌注桩施工工艺、地铁施工中的桩基托换技术、过江隧道施工中的水平冻结法、地铁车站三拱两柱结构暗挖中洞施工工艺、海上基础工程施工工艺等。

三、发展方向

我国已有近40年的地下空间开发修建史,尤其是今年来的各种地下空间的开发利用更加丰富了我国在包括地铁、隧道、地下商城等地下空间部分的规划、设计、施工管理与防灾救治设备维修等技术丰富和管理制度。由于我国地域广大、地质情况复杂多样,地下部分的开发利用也必然存在着极大的难度。就目前看来,我国已有的技术手段可以应付除西部和东北地区以外的大部分城市的地下建设需求。

为了使我国的地下建筑开发日趋完备,更快的完成经济、适用、安全等要求,我们仍需努力。

1、尽早统一地下建筑的设计、施工规范,以保证其有法可依。

2、组织力量对地下建筑施工技术及设备进行研究开发,寻找更为经济环保的施工工艺。

3、加大地下建筑防水材料、工艺及设备的研究力度。目前我国地下建筑的防水问题仍是一大空白,地下部分建筑的防水因其地理位置的特殊性,常用的工程防水技术难以满足防水要求或者后期维修复杂繁琐。故对地下防水新型防水材料和防水工艺的开发利用是刻不容缓的。

国内外地下综合管廊发展现状研究 篇6

1.1.1城市地下管廊发展情况

近年来,我国城市化进程不断加快,城市综合实力不断增强,对外交流日益增多,城市地下空间不断被开发,综合管廊的重要性越来越被人们认识。

我国第一条地下综合管廊是1958年在北京市某广场下建设约1.3km的综合管道,断面为方形,宽3.5~5.0m,高2.3~3.0m,埋深7.0~8.0m。

1978年12月23日,宝钢在上海动工兴建。被称之为宝钢生命线的电缆干线和支干管线大部分采用综合管廊方式敷设,埋设在地面以下5~13米。

1978年,大同市在新建道路交叉口以下建设地下综合管廊,沟内设置有电力电缆、通信电缆、给水管道、污水管道。

1985年,北京市建设中国国际贸易中心综合管廊,其中容纳服务于2栋公寓大楼、1栋商业大楼、1栋办公楼的公用管线,管廊内有电力、通讯、供热管。

1988年,天津新客站工程为穿越7股铁路线路建设了一条约为50m的地下综合管廊,内设雨水管道、给水管道及动力控制线。

1991年,济南3号矿井工业场地地下综合管廊开始建设,至1993年底共完成1806m。

1994年,上海开始建设浦东新区张杨路地下综合管廊。张杨路地下综合管廊位于浦东新区张杨路南北两侧人行道下,西起浦东南路,东至金桥路,全长11.125km。沟体为钢筋混凝土结构,其横断面形状为矩形,由电力室和燃气室两部分组成。电力室中央敷设给水管道,两侧设有支架,分别设电力和通讯电缆;燃气室为单独一空室,内敷设燃气管道。地下综合管廊还配备各种各样安全设施,有排水、通风、照明、通信广播、闭路电视监控、火灾检测报警、可燃气体检测报警、氧气检测、中央计算机数据采集与显示系统。

1997年,连云港建造西大堤地下综合管廊。断面为梯形,构体北侧为挡浪板,南侧靠内海,设宽为40m的防撞墩,沟内高为1.5~1.7m,宽为1.7~2.4m,内设给水管道、电力电缆、电信电缆。

1998年,天津在塘沽某小区内建造了410m的地下综合管廊,断面为矩形,宽为2.3m,高度为2.8m,内设采暖管道、热水管道、消防管道、中水管道等。

2000年,北京某道路改造工程在道路两侧的非机动车和人行道下建造了600m的地下综合管廊。南侧断面为矩形,宽为11.15m,高为2.7m,埋深约2.0m,采用明挖施工,内设电信电缆、热力管道、给水管道、电力电缆;北侧断面为圆形,直径为3m,采用暗挖施工,内设电信电缆、天然气管道、给水管道。

2001年,济南市泉城路地下综合管廊分南北两条,高为2.7m,宽分别为3.4m和3.75m,内设监控、消防、通风、排水系统,地下还将建设主控室,系统由地下主控室控制。

2001年,深圳市对大梅沙至盐田地下综合管廊进行可行性研究,沟体采用半圆形城门拱形断面,高2.85米,宽2.4米,结构采用初期支护和一次衬砌的钢筋混凝土复合断面结构,内设给水管道、压力污水管道、高压输气管道以及电力电缆。此地下综合管廊已经建成,是深圳市第一条地下综合管廊。

2002年,衢州结合旧城改造,建造了坊门街地下综合管廊,长491.48m,内宽2.2m,高2.4m,内设电力电缆、给水管道、通信电缆。此条地下综合管廊含电力、供水、电信、移动、铁通、联通、广电传输网络等7个单位,按使用容量分摊资金合股建设。

2002年底,嘉定区安亭新镇地下综合管廊动工兴建。安亭新镇地下综合管廊系统服务全镇,贯穿主要道路,总长约6km形成“日”字形格局,主体结构采用钢筋混凝土矩形框架结构形式,断面长宽均为2.4m。入沟管线主要为:给水管线、电力管线、通信电缆、广播电视电缆、燃气管道等。管沟箱结构分为电力室和燃气室两部分,电力室两侧设有支架,都是以层架形式布置于地下综合管廊内,分别设电力、通信电缆和给水管道等;而燃气管道则置于上方的专用燃气室内。

2003年,北京修建的中关村广场地下综合管廊位于中关村西区。地下工程建设面积近30万㎡,分为地下综合管廊和地下空间两部分,整个地下工程投资约17亿元。地下负一层是贯穿整个社区的交通环廊,将地面交通移到地下,较好解决了地面交通问题,今后在科技园核心区地面上全是步行街、花坛、绿地,充分体现了科技与人文的设计理念;负一层为车库、商业、餐饮、库房、物业服务管理等设施;负二层为地下综合管廊,有燃气、热力、电力、电信、自来水等公用设施。为了将这些公用设施送到地面,共敷设主支管线约3km。管廊距地面约14km左右,各种管线放置在单独的管沟中,单个管沟宽约1.1m,深约2.4m。此管沟不同于单纯的地下综合管廊,结合中关村西区地下商业网点的建设,把各种管线规划在单独的管沟中,方便了管线管理,增加了管线的安全性,但投资很大。

2003年,上海松江新城示范性地下综合管廊(一期)长度为323m,高度和宽度均为2.4m,沟内从上到下依次铺设了粗细不等的电力电缆、通信电缆、有线电视电缆、给水管道、燃气管道等。

2004年,广州市结合科韵路南延长线道路改造,建设了一条全长约3.5km的地下综合管廊,共有电信、移动、联通等多家通信运营商参与。该项目工程完工后,广州市的通信管道集约化“同沟同井”管线将达45km。广州大学城(小谷围岛)综合管廊建在小谷围岛,总长约17km,其中沿中环路呈环状结构布局为干线管廊,全长约10km;另有5条支线管廊,长度总和约7km。该综合管廊是广东省规划建设的第一条共同管沟,也是目前国内距离最长、规模最大、体系最完善的共同管沟,它的建设是我国城市市政设施建设及公共管线管理的一次有益探索和尝试。

武汉王家墩商务区综合管廊总长12.7km,其中干线沟为8.98km,支线沟为3.72km。规划投资约2亿元。

福州重点工程琅岐环岛路首段综合管廊全长约40000m。管廊为矩形双仓断面,基本结构尺寸为宽5.8m,高3.2m。综合管廊造价约为4.15万元/m。

杭州目前最长的综合管廊——钱江新城第一条长达2.16km的综合管廊也于2006年年初完工。杭州在站前广场改建工程中,为避免站层和各地块进出管线埋设与维修开挖路面,从而影响车站的运行,将给水管、污水管、电信电缆、电力电缆、铁路特殊电信电缆、有线电视电缆、公交动力线、供热管等置于综合管廊内。

2014年,四川新川创新科技园区——新区大道综合管廊开工工程,平面布置在中分带内,全场3580m。全段采用南北分仓结构,综合管廊埋置深度大部分在7.5m以内,局部段穿越雨污水管,纵断面较深,最深处达11m。管廊宽度为7.75m,高度为4.0m。

2014年4月28日,四川成都红星路南延线段一期综合管廊工程建设完成。主线隧道全长2793m,为城市快速路,核心区域综合管廊长503.42m;综合管廊分仓:分为电力仓、水仓、电信仓三仓分布,纬六路110KV电力进线单独设置电仓,采用四仓布置,结构净空12.30m*5.50m。项目设计内容主要包括:道路工程、市政管线工程(包括雨污水、电力浅沟、综合管廊、市政管线迁改、管线综合)、隧道结构工程、雨水泵站工程、基坑工程、机电工程(包括电力、智能监控、通风、消防)建筑景观及装修工程、交通工程、电力隧道工程、渠道工程等10部分内容。

台湾地区:台北市在1991年开始建设综合管廊,至2003年12月31日已经在21个地段建设了干线地下综合管廊、支线地下综合管廊及电缆沟。合计干线地下综合管廊60111m;支线共同沟52026m;电缆沟66005m。台湾在1992年规划城市管线地下综合管廊长约65km。并将在台北市的快速路下建一条长约7km的管线地下综合管廊。随后为了促进综合管廊的快速有序健康发展,台湾制定和颁布了多项相关的法律法规,如《共同管道法实施细则》法律和《共同管道设计标准》技术规范,有效地推进综合管廊的发展。

目前,台湾已经建成的有淡海及高雄新市镇、南港经贸园区等的综合管廊,正在规划综合管廊的有台中市、嘉义市、新竹市、台南市、基隆市,这些已建和规划的综合管廊大多数非常重视与地铁、高架道路、道路拓宽等大型城市基础设施的整合建设相结合。如台北市东西快速道路综合管廊的建设,全长6.3km。其中,2.7km与地铁整合建设;2.5km与地下街、地下车库整合建设;独立施工的综合管廊仅1.1km。将他们一起建设,分担了建设成本,避免多次开挖施工,从而大大地降低总的投资资金。目前,全台湾地区已建综合管廊有300余千米。

清华大学董林旭教授在其著作《地下建筑学》中,介绍国外地下综合管廊发展的一些趋势;西南交通大学关宝树教授在其著作《城市地下空间开发利用》中对日本地下综合管廊的发展做较为详细的介绍;同济大学束昊教授翻译出版了《地下空间利用手册》,书中对世界地下综合管廊的发展现状和趋势做了分析和介绍;上海市政工程设计研究总院(集团)有限公司王恒栋副总工程师著有《综合管廊建设思考》。总的来说,国内外对于地下综合管廊项目的研究主要集中在地下综合管廊建设技术及建设规模上,真正针对地下综合管廊项目的融投资所进行的研究,目前还是空白。

目前,我国一些经济发达的城市和新区在建或者已经建成综合管廊,在其他城市和地区没有得到大面积的推广和普及。但随着我国科学发展观的提出和不断实践,城市可持续发展理念不断深入人心,近几年,许多城市掀起了新一轮的城市基础建设热潮及地下轨道交通的规划建设,城市化进程步伐也在加快,越来越多的大中城市已开始着手共同沟建设的试验和规划,如上海、北京、昆明、广州、深圳、重庆、南京、济南、沈阳、福州、郑州、青岛、威海、大连、厦门、大同、嘉兴、衢州、连云港、佳木斯等,截止2008年年底,已建成综合管廊长度约150km,在建约100km,规划待建约500km。1.1.2 存在问题

总的来说,我国城市综合管廊建设相对缓慢,既有资金和技术上的问题,也有意识、利益纠纷上的问题。

1.思想交流不足

因为缺乏标准,全国各设计单位在近十年甚至更长的时间里,只采用一套或两套通用图,与其他地区交流甚少,就该课题也没有形成全国范围内的思想大交流或学术研讨会,科学调研少,设计市场处于封闭状态,逐步形成本地区习惯性的设计思维。这样就导致因缺乏不同类型的通用图,设计者不能在类型方案选取时,针对工程的具体情况和地质、地形及施工条件等情况,进行多种管沟类型方案的比较和论证,造成推荐方案不尽合理,工程造价较高等情况的出现。

2.法律范围上的匮乏和设计上的不足

在国外,因为城市发展成熟,工程界对综合管廊研究较早,基础设施建设完善,现代化程度高。日本早在1963年通过并颁布了《共同管沟实施发》,随后日本的综合管廊得到迅速发展,成为世界上综合管廊技术最发达,已建成综合管廊里程最长的国家。我国台湾地区在200年公布实施《共同管道法》等共34条法律法规,在这些法律法规的指导下,台湾地区综合管廊的建设发展也进入了快车道。台湾和日本都成为发展综合管廊的良好典型。

我国内地对于综合管廊的建设和设计起步较晚,认识不足。在综合管廊建设的法律体制方面,虽做了一定的努力,并制定了《城市地下空间开发利用管理规定》、《城市道路设计规划》等一些与综合管廊建设相关的规范性文件,也有如《杭州市城市地下管线管理条例(草案)》等一些地方性的指导规范,但在设计上,相关具体的设计理念和权威的设计规范方面几乎处于空白状态。没有行业上规范统一的设计、施工、验收方面的规范标准,大多数设计只是参照相近的技术标准,并经常采用其他规范来进行综合管廊的设计,或者依据别人的建设经验进行设计,这样就出现这种情况,各地在建和已经建好的综合管廊,往往都是设计单位依据单位内部或者地方性的建设规范,再根据设计经验来完场综合管廊的设计和建设任务,并没有一个完整的理论体系和统一的指导意见,这在一定程度上影响了我国综合管廊往高质量、低成本的发展脚步。

目前,我国一些城市在建设综合管廊时其设计思路采用日本20世纪80年代的技术,我国城市目前的发展环境和遇到的难题,跟国外的情况也不同,国外早期的综合管廊技术已经不能满足我国现代化城市功能的可持续发展要求。我国城市的发展建设,设计人员不能简单抄袭模仿国外设计方案,要有自己的特点,在借鉴和创新的基础上发展具有中国特色国际先进水平的市政综合管廊。

3.规划管理上有难度

现在我国直埋地下管线分属不同的政府部门,由于涉及到利益问题,主管管线的部门服务意识薄弱,信息共享不及时等原因,造成了市政管线的重复建设和投资浪费。而且随着城市基础设施的不断更新和完善,对地下空间的利用越来越多,规划管理上的落后已经制约了城市的发展,成为可持续发展的瓶颈。

4.资金投入上有不足

综合管廊是一项系统工程,具有投资周期长,回收效益慢的特点,总的建设投资比直埋式管线大,未形成规模前难以发挥作用,产生效益。由于我国在城市基础设施建设上的投入一直过低,只有国内一些经济发达的城市有能力建设综合管廊,其他地区甚至都没有综合管廊的规划。资金的投入不足也造成我国国内综合管廊整体发展缓慢,要改变这一现状,需要政府部门加大资金投入。1.1.3 综合管廊在我国的应用前景

1.经济基础

经过30余年的改革开放,我国城市经济发展迅速,具备一定的建设综合管廊的经济基础。根据国际地下空间开发利用经验,一般城市人均GDP大于3500美元时,城市进入地下空间开发利用快速发展期。据有关报道,截止2010年,中国内地有10个城市的人均GDP突破1万美元,按7%的年增长率考虑;至2020年,我国人均GDP将达到8000美元,至少有20个大城市的人均GDP超过20000美元,全国有上百个城市人均GDP超过10000美元。

目前,我国至少有20个城市已经建有综合管廊,在建和已规划设计综合管廊的城市也多达20余个,国内综合管廊建设除在一线城市外,还将逐步扩展至二线城市。

2.建设时期

城市的基础设施建设直接关系到城市的生活质量和投资环境,各种市政管线是城市基础设施的重要组成部分,号称“城市的血脉”。综合管廊相对于管线直敷的优点无须赘述,各发达国家的发展实例已经摆在面前,关键是看我国的推动能力和经济实力。我国城市老城区改造、新城区建设正处于热潮之中,在这个阶段大力推进综合管廊的建设是造福市民及促进城市建设的明智之举。

3.发展空间

有关资料表明,目前日本综合管廊总长度达到1100km。成为世界上综合管廊规模最大的国家。我国台湾地区至2005年,综合管廊建设总长度已经超过250km;大陆地区目前已建成的综合管理长度约有300km,在建和已经规划设计的管沟长度约有200km。据推测,2020年我国大陆地区综合管廊总长度将达到800km以上;2030年在全国100个大中城市中的综合管廊总长度将达到1300km以上。这就意味着在今后十余年中,我国综合管廊总长度将以每年平均50km以上的速度增长。

4.建设环境

在我国,综合管廊的设计、施工技术已没有问题,抓紧制订与综合管廊相关的技术规范标准,是目前最紧迫需要解决的问题。日本综合管廊就是在1963年《共同管沟实施法》颁布以后快速发展起来的,我国台湾地区也于2000年颁布了《共同管道法》,而我国大陆的综合管廊方面的立法及技术规范标准迟迟未出台,这也制约了我国综合管廊的健康快速发展。我国应参照国际先进经验,结合国情,完善综合管廊的规范标准建设,为综合管廊的快速可持续发展创造必要的前提条件。

1.2欧、美、日等发达国家城市地下综合管廊技术发展现状

在国外,综合管廊已经有170年的发展历史,其建设技术和设计理念也在不断的完善和提高,全球范围内的建设规模也越来越大。铺设地下综合管廊是综合利用地下空间的一种手段,某些发达国家已经实现了将市政设施的地下供、排水管线发展到地下大型供水系统、地下大型能源供应系统、地下大型排水及污水处理系统,与地下轨道交通和地下街相结合,构成完整的地下空间综合利用系统。

早在19世纪,法国(1833年)、英国(1861年)、德国(1890年)等就开始兴建地下综合管廊。到20世纪美国、西班牙、俄罗斯、日本、匈牙利等国也开始兴建地下综合管廊。据不完全统计,截止2008年底,全世界已建成综合管廊超过3000km。

1.2.1 法国巴黎地下管网与管廊

地下综合管廊最早见于法国,1833年为了改善城市的环境,巴黎就系统地在城市道路下建设了规模宏大的下水道网络,同时开始兴建地下综合管廊,最大断面达到6.0m,高约5.0m,容纳给水管道、通信管道、压缩空气管道及交通通信电缆等公用设施,形成了世界上最早的地下综合管廊。

作为一个有1200万人口的大都市,巴黎拥有一个大约1300名维护人员的高效运转的地下管网系统。这个始建于19世纪的以排放雨水和污水为主的重力流线管线系统,管网纵横2450km(足以往返北京至武汉),包括1.8万个排污口,2.6万个下水管盖,6000多个地下蓄水池,而且还能通过管道内部铺设供水管、煤气管、通信电缆、光缆等管线,进一步提高了管网的利用效能,在官网的末端,通过现代化污水处理厂,系统每天处理超过300万㎡的高腐蚀性废弃物,最终实现对生态环境和城市面貌的良好保护,确保巴黎市的正常运作和发展。

1.巴黎地下管网系统的发展历程

(1)城市扩张引发的生态问题是建设巴黎地下管网的起因

1785年,巴黎人口已达60万,全挤在市中心的贫民区内,人均寿命只有40岁,当时巴黎市区的公募已经完全饱和,市内建筑道路杂乱无章,污水未经处理直接排放到塞纳河,一遇到大雨满街就会污水横流。如此严重生态危机为启动长期争议的巴黎重建工作提供了动力。

(2)科学规划是地下管网系统成功的关键

1850年,巴黎人口达到100万,城市因地狭人稠而不堪重负。到1878年止,修建了600km的下水道。随后下水道即开始不断延伸,直到现在长达2450km。

(3)巴黎地下的石灰岩结构为地下管网的建设提供了便利条件

巴黎地下拥有非常良好的石灰石岩层。从12世纪到15世纪,巴黎城市建设的建筑用石都是来自当时郊区的地下采石场。(4)不断改进的系统确保满足城市需求

现在,先进的信息管理系统确保了管网系统的高效运作。下雨时,安装在主要下水管道中的传感器会持续检测水位。如果水位过高,过剩的水流会通过水泵分流到水位较低的管道中去。如果所有管道的水位都过高,过剩的水流就会汇集到分布在城区的大型地下蓄水池,水退以后,积蓄的水位会再排放到下水管道中。一旦整个系统过载,安全系统将立即发挥作用——45条直达塞纳河的排水管道在水流的作用下会自动启动安全门,让过剩的水流直接排往塞纳河。19世纪以前,巴黎市经常出现污水在街道泛滥的情况。巴黎平均每年只有4次被迫向塞纳河直排污水。

2.巴黎地下管网系统的主要特点

(1)巴黎地下管网系统是地下综合管廊概念的发源地

在以排水为主的管廊中,巴黎市创造性的在其中布置了一些供水管、煤气管和通信电缆、光缆等管线,进一步提高了管网的利用效能,并形成了早期的地下综合管廊。

地下综合管廊也叫“地下城市管道综合管廊”,即地下管廊。它是把设置在地上架空或地下敷设的各类公用管线集中容纳于一体,并预留检修空间的地下隧道,便于科学合理地做好地下管线的规划和铺设,集中共同管理。地下综合管廊内排水、消防、电气系统、监控系统、通风、照明等附属设施一应俱全,主要适用于交通流量大、地下管线多的重要路段,尤其是高速公路、主干道。

目前,国外大城市已普遍采用地下综合管廊、地下污水处理厂、地下电厂、地下河川以及其他地下工程,其总趋势是将有碍城市景观与城市环境的各种城市基础设施全部地下化。地下综合管廊是市政管线集约化建设的趋势,也是城市基础现代化建设的趋势。传统的市政管线直埋方式,不但造成了城市道路的反复开挖,而且对城市地下空间资源本身也是一种浪费。沿城市道路下构筑综合管廊,将各种管线集约化,采取地下综合管廊的方式敷设,不仅有利于各种管线的增减,还有利于各种管线的检修管理,是一种较为合理科学的模式。并且,综合管廊已成为衡量城市基础设施现代化水平的标志之一。(2)使用先进的机器人技术提高管道检修和建设的效率

地下管道的每个区域每年都要检查2次并记录在案。巴黎地下管道管理局使用先进的光缆铺设机器人和管道检测机器人提高管道检修和建设的效率。

(3)利用现代化的污水处理技术保护生态环境

污水收集后存放在封闭的池中,加细菌生产的气体收集可作燃料;离心处理后的污泥干燥后经过处理,最终得到成品化肥或建材添加剂应用于工业。1.2.2 日本城市地下综合管廊技术发展规划

虽然日本很早就开始建造地下综合管廊(如关东大地震后,为复兴首都而兴建的八重洲地下综合管廊),但真正大规模的兴建地下综合管廊,还是在1963年日本制订《共同管沟实施法》以后。自此,地下综合管廊就作为道路合法的附属物,在有公路管理者负担部分费用的基础上开始大量建造。

管廊内的设施仅限于通信、电力、煤气、上水管、工业用水、下水道6种。随着社会不断发展,管廊内容纳的管线种类已经突破6种,增加了供热管、废物运输管等设施。筑波科学城建立的一整套垃圾管道运送和焚烧处理系统,输送管道就布置在地下公用设施的地下综合管廊中。日本国土狭小,地下综合管廊的建造首先在人口密度大,交通状况严峻的特大城市展开。现在已经扩展到仙台、冈山、广岛、福冈等地方中心城市。截止1982年,日本拥有地下综合管廊共计156.6km,至1992年日本已经建造地下综合管廊310km。目前仍以每年15km的速度增长。预约使用者负担的投资大约占全部工程费用的60%~70%。

1926年,日本相继建造了九段阪地下综合管廊、淀町地下综合管廊、八重洲地下综合管廊。九段阪地下综合管廊长270m,宽约3m,高约2m,沟内敷设了电力电缆、电信、给水、污水等管线,全盘引进欧洲的建设经验和技术标准,全部采用钢筋混凝土箱形结构形式。淀町地下综合管廊修建在人行道下,宽约1m,高0.6m;电信电缆沟宽约0.4m,高约0.3m,覆土较浅(0.5~1.5m)。修建目的是为了消除地面架空线。八重洲地下综合管廊是为了探索煤气管道的敷设模式而单独修建,宽约1.3m,高约1m。1959年又分别在新宿和尼崎建造了地下综合管廊。

“共同沟”一词源自日本,因为日本对其他国家和地区综合管廊的建设产生的影响较大,在综合管廊建设方面,日本有着雄厚的资金支持,完善的法律法规,先进的城市发展建设理论,所以它的发展速度最快,建成的综合管廊里程最长。

1963年4月颁布《综合管沟实施法》首先在尼崎地区建设综合管廊889m,同时在全国各大城市拟定五年期的综合管廊连续建设计划。

1963年,日本颁布《关于共同沟建设的特别措施法》(简称《共同管沟实施法》)。1963年10月4日同时颁布了《综合管沟实施令》和《综合管沟实施细则》,并在1991年成立专门的地下综合管廊管理部门,负责推动地下综合管廊的建设工作。日本现已成为地下综合管廊建设最先进的国家。

日本城市综合管廊建设总体发展目标是:21世纪初,在县政府所在地和地方中心城市等80个城市干线道路下建设约1100km的地下综合管廊。在人口最为密集的城市东京,提出利用深层地下空间资源,建设规模更大的干线综合管廊网络体系设想,反映出日本乃至全世界城市综合管廊建设的趋势和今后的发展方向。

1.2.3 其他国家地下综合管廊的发展情况

1.英国伦敦地下管网

上一篇:儿童英语的基础入门知识下一篇:深入开展整顿机关作风活动个人剖析材料