推理证明测试题(精选8篇)
试卷满分100分,考试时间105分钟
一、选择题:本大题共10小题,每小题3分,共30分.1、下列表述正确的是().①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理.A.①②③; B.②③④; C.②④⑤; D.①③⑤.2、下面使用类比推理正确的是().A.“若a3b3,则ab”类推出“若a0b0,则ab”
B.“若(ab)cacbc”类推出“(ab)cacbc”
C.“若(ab)cacbc” 类推出“ab
ca
cb
c(c≠0)”
nnnnnnD.“(ab)ab” 类推出“(ab)ab”
3、有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线
平面,直线b∥平面,则直线b∥直线a”的结论显然是错误b平面,直线a的,这是因为()
A.大前提错误B.小前提错误C.推理形式错误D.非以上错误
4、用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,反设正确的是()。
(A)假设三内角都不大于60度;(B)假设三内角都大于60度;
(C)假设三内角至多有一个大于60度;(D)假设三内角至多有两个大于60度。
5、在十进制中2004410010010210,那么在5进制中数码2004折合成十进制为()
A.29B.254C.602D.20046、利用数学归纳法证明“1+a+a+„+a
成立时,左边应该是()
(A)1(B)1+a(C)1+a+a2(D)1+a+a2+a37、某个命题与正整数n有关,如果当nk(kN)时命题成立,那么可推得当nk
1时命题也成立.现已知当n7时该命题不成立,那么可推得
A.当n=6时该命题不成立 C.当n=8时该命题不成立()2n+10123=1an21a,(a≠1,n∈N)”时,在验证n=1B.当n=6时该命题成立 D.当n=8时该命题成立
8、用数学归纳法证明“(n1)(n2)(nn)2n12(2n1)”(nN)时,从 “nk到nk1”时,左边应增添的式子是
9、已知n为正偶数,用数学归纳法证明1
121314
1n
12(1n
2
1n
4
12n)时,若已假设nk(k2为偶
D.
2k2k1
()
A.2k1 B.2(2k1)C.
2k1k1
数)时命题为真,则还需要用归纳假设再证
A.nk1时等式成立 C.n2k2时等式成立
()
B.nk2时等式成立 D.n2(k2)时等式成立
10、数列an中,a1=1,Sn表示前n项和,且Sn,Sn+1,2S1成等差数列,通过计算S1,S2,S3,猜想当n≥1时,Sn=()
A.
21
2n1n
B.
212
n
1n
C.
n(n1)2
n
D.1-
n1
二、填空题:本大题共4小题,每小题3分,共12分.11、一同学在电脑中打出如下若干个圈:○●○○●○○○●○○○○●○○○○○●„若将此若干个圈依此规律继续下去,得到一系列的圈,那么在前120个圈中的●的个数是。
12、类比平面几何中的勾股定理:若直角三角形ABC中的两边AB、AC互相垂直,则三角形三边长之间满足关系:ABAC
BC。若三棱锥A-BCD的三个侧面ABC、ACD、ADB两
两互相垂直,则三棱锥的侧面积与底面积之间满足的关系为.13、从1=1,1-4=-(1+2),1-4+9=1+2+3,1-4+9-16=-(1+2+3+4),„,推广到第n个等式为_________________________.14、设平面内有n条直线(n3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f(n)表示这n条直线交点的个数,则f(4)=;
当n>4时,f(n)=(用含n的数学表达式表示)。
三、解答题:本大题共6题,共58分。
15、(8分)求证:
(1)a2b23abab);(2)6+7>22+5。
16、设a,b,x,y∈R,且错误!未找到引用源。(8分)
17、若a,b,c均为实数,且错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。,求证:a,b,c中至少有一个大于0。(8分)
18、用数学归纳法证明:(Ⅰ)
(Ⅱ)1
121314
12
1n
1
3
3
5
n
(2n1)(2n1)
n(n1)2(2n1)
;(7分)
n;(7分)
19、数学归纳法证明:错误!未找到引用源。能被错误!未找到引用源。整除,错误!未找到引用源。.(8分)
20、已知数列{an}满足Sn+an=2n+1,(1)写出a1, a2, a3,并推测an的表达式;(2)用数学归纳法证明所得的结论。
第四十一中学高二数学选修2-2《推理与证明测试题》答案
一、选择题:本大题共10小题,每小题3分,共30分.DCABBCABBB
二、填空题:本大题共4小题,每小题3分,共12分.11、1412、错误!未找到引用源。
13、错误!未找到引用源。
14、5;错误!未找到引用源。
三、解答题:本大题共6题,共58分。
15、证明:(1)∵a2b2
2ab,a3, b3;
2将此三式相加得
2(a2b23)2ab,∴a2b23abab).(2)要证原不等式成立,只需证(6+7)2>(22+5)2,即证242240。∵上式显然成立,∴原不等式成立.16、可以用综合法与分析法---略
17、可以用反证法---略
18、(1)可以用数学归纳法---略(2)当nk1时,左边(1
(1
2k
k
12
1k)(12
k
k1
1)k
k
k)k2
k
k1=右边,命题正确
2k项
19、可以用数学归纳法---略
20、解:(1)a1=
158, a2=
n, a3=,猜测 an=2-
(2)①由(1)已得当n=1时,命题成立;
②假设n=k时,命题成立,即 ak=2-
k,当n=k+1时, a1+a2+„„+ak+ak+1+ak+1=2(k+1)+1,且a1+a2+„„+ak=2k+1-ak
∴2k+1-ak+2ak+1=2(k+1)+1=2k+3,∴2ak+1=2+2-
k,ak+1=2-
k1,即当n=k+1时,命题成立.根据①②得n∈N+, an=2-
n
一、几何推理与图形证明教学的现有问题
一些初中数学教师目前依旧使用较为传统的讲课模式,即将课本上的重点知识和例题进行详尽地讲解,在这样的教学模式下,学生处于一味地接受状态,在课堂上要对庞大的信息量和知识接受让他们应接不暇,大部分学生做不到真正地理解和消化,更不用说培养起有效的几何推理思维和图形证明能力.这样的教学收效甚微,几何证明与普通的数学证明有着一定的区别,它需要学生不仅仅掌握数学证明的技巧和方法,更要有一定的空间想象能力和几何思维能力.
二、定理和重要概念的引入及教学
定理是几何推理的根本,许多几何推理与图形证明所需的知识都是由定理推广而来,因此教师在几何教学的过程中,首先要注重的就是定理和一些重要概念的引入及教学.在引入方面,由于定理具有高度的概括性,学生死记硬背效果不佳,因此教师要注意引入定理和重要概念的时机和方法.许多几何推理题往往就是对定理的反复运用,只要学生能够熟练地运用定理在做题的过程中就能够游刃有余,例如下题.
例1已知在三角形ABC中,D为BC边上的中点,在AD上任取一点E,连接BE,延长BE交AC与F,BE=AC,求证AF=EF.
证明:如图1,连接EC,取EC的中点G,AE的中点H,分别连接DG,HG.
则:GH=DG.
所以:∠1=∠2,
而∠1=∠4,∠2=∠3=∠5.
所以;∠4=∠5,所以:AF=EF.
乍一看这道题的题目比较复杂,实际上就是对于等腰三角形等边对等角这一基本定理的应用,学生对定理掌握的程度较深时,面对“三角形”、“中点”等条件很容易就会进行联想并作出辅助线DG和HG,通过等腰三角形和平行线段的性质进行角与角之间的转换,最后通过“等角对等边”的性质完成证明.这道题就是典型的对定理掌握程度的考察,对于这种题型要注意对定理的灵活应用.
三、学会“读题”,明确题中条件要素
在进行几何推理和图形证明的过程中,教师需要结合大量的例题进行讲解,这是十分必要的,在讲解之前,教师应当注重培养学生的“读题”能力,阅读题设看起来似乎是一件非常简单的事,其实解题和证明所需的大部分要素都包含在简短的题设之中,在读题的过程中对题设进行拆解,提取出其中重要的要素和隐含条件,才能为之后的证明或解题铺好路.尤其是当学生面对较为复杂的题设,要学会从中抽丝剥茧,理清头绪,一步一步地整理题设中所提及的条件,结合图形将它们以合理的逻辑排列出来,与最终需要解答或证明的问题进行条件匹配.这种读题能力就需要教师在课堂上讲解例题时引导学生慢慢去学习和掌握,这样才能在做题的过程中不会被复杂的题设蒙蔽了双眼,做到心中有数[2].
四、培养学生几何推理思维
1. 三种思维的应用
几何推理和图形证明同样属于数学证明的一种题型,对于这样的题型而言,最重要的就是培养学生的逻辑推理思维,在推理的过程中,通常有以下三种思维方式.第一、正向思维,也就是学生在推理和证明的过程中最常用的一种思维方式,从题设和条件出发,一步步地推出结果.这种方式比较常见,因此学生学习和应用起来也比较轻松.第二、逆向思维,顾名思义就是反向地去推理,也就是从结果入手进行推理,最典型的一种逆向思维证明法就是反证法.逆向的思维方式对于学生而言并不是十分常用,但它往往是解决难题的好帮手,难题的题设往往十分复杂繁多,在许多条件的铺陈下,题设拆解分析能力较弱的学生难免会一时之间找不到头绪,不知从何下手,而逆向思维法能够帮助学生迅速找到题目的切入点与突破口,很快进入到推理之中.第三种就是正向思维与逆向思维的结合,这种方法通常应用于难题的推理证明之中,将两种思维方式的特点相结合,同时也将题目中的条件和结果有机结合,帮助学生迅速找到推理的有效路线.在课堂教学之中,教师应当注重这三种思维的教学,尤其是学生不太常用的逆向思维和正逆结合思维,帮助学生开拓几何推理的思维,在解题的过程中可以做到多种思路的选择[3].
2.“动手”做题,辅助线的应用
在学习几何推理和图形证明的过程中,最常用也是最必不可少的一个方法就是做辅助线.当学生遇到单纯靠拆解题设和思维分析无法解决的时候,应当有动手画图做辅助线的意识,这种意识和能力需要教师在课堂教学之中进行重点培养.然而做辅助线有时候并不是万能的,一条错误的辅助线甚至会将学生的推理思路带入误区,导致推理混乱,因此,教师在教学过程中务必将辅助线的教学作为一个重点.
例2已知:在△ABC和△A'B'C'中,AB=A'B',AC=A'C'.AD,A'D'分别是△ABC和△A'B'C'的中线,且AD=A'D'.
求证:△ABC≌△A'B'C'.
证明:分别过B,B'点作BE∥AC,B'E'∥A'C'.交AD,A'D'的延长线于E,E'点.
则:△ADC≌△EDB,△A'D'C'≌△E'D'B'.
所以:AC=EB,A'C'=E'B';AD=DE,A'D'=D'E'.
所以:BE=B'E',AE=A'E'
所以:△ABE≌△A'B'E'
所以:∠E=∠E'∠BAD=∠B'A'D'
所以:∠BAC=∠B'A'C'
所以:△ABC≌△A'B'C'
这一题需要证明三角形ABC和三角形A'B'C'全等,现有的条件是其中的两条边相等,还差一个条件,边BC和边B'C'相等或现有两边的夹角相等,经分析,有边AD和边A'D',我们很容易发现实现角的相等更为容易,AD将我们需证的夹角一分为二,因此需分别证明分角与分角相等,等角很容易让人联想起平行线,这就是辅助线的灵感来源,显然,有了辅助线的帮助就多了一个等角的条件,可以进行角之间的转换.这一题就是典型的辅助线的巧妙应用.
总之,几何推理和图形证明是初中数学的教学中至关重要的一个环节,教师在教学过程中应当打好基础,在定理的教学方面下功夫,努力培养学生的“读题”能力和几何思维方式,提高几何图形课堂教学的效率.
参考文献
[1]葛莹.初中数学几何推理与图形证明对策[J].学周刊,2015(14):222.
[2]焦龙.初中数学几何概念和定理教学探析[J].学周刊,2015(20):163.
例1 设函数[f(x) (x∈R)]为奇函数,[f(1)=12],[f(x+2)=f(x)+f(2)],则[f(5)=]( )
A. [0] B. [1] C. [52] D. [5]
解析 法一:利用类比推理.
本题为抽象函数,只给出了性质,没有给出具体函数及特征,未给出解析式. 根据给出性质,与正比例函数相似,故可用正比例函数[y=kx]进行类比,由于[f(1)=12],则[f(x)=12x],该函数是奇函数,且满足[f(1)=12], [f(x+2)=f(x)+f(2)],即该函数符合题设条件,则[f(5)=52],选C.
法二:利用演绎推理.
∵[f(x+2)=f(x)+f(2)],令[x=-1],
则[f(-1+2)=f(-1)+f(2)],
∴[f(1)=f(-1)+f(2)],
而[f(x) (x∈R)]为奇函数,[f(1)=12],
则[f(-1)=-f(1)=-12],
∴[f(2)=1],∴[f(x+2)=f(x)+1],
再令[x=1]得,[f(3)=f(1)+1=32],
∴[f(5)=f(3+2)=f(3)+1]=[52],选C.
点拨 本题的两种解题途径,其一是类比推理,其二是演绎推理;如果作为解答题,类比推理的结论是不可靠的,作为选择题,由于四个选项中只有一个是正确的,暗示着符合题目的条件任何函数[f(x)],则[f(5)]的值不会改变,既然如此,可选取一个特殊函数即可. 对于抽象函数的问题可以通过类比方法得出结论. 几种常见的抽象函数的类比函数可见下表:
[函数[f(x)]满足的条件&可类比函数&[f(x1+x2)=f(x1)+f(x2)]&正比例函数 [y=kx]&[f(x1+x2)=f(x1)f(x2)]&指数函数[y=ax]([a>0],且[a≠1])&[f(x1x2)=f(x1)+f(x2)]&对数函数[y=logax]([x>0)]&[f(x1x2)=f(x1)f(x2)]&幂函数[y=xn]&[f(x1)+f(x2)=2f(x1+x22)f(x1-x22)]&余弦函数[y=cosx]&]
例2 在德国不来梅举行的第48届世乒赛期间,某商店橱窗里用同样的乒乓球堆成若干堆“正三棱锥”形的展品,其中第1堆只有1层,就一个球;第[2,3,4,⋯],[n]堆最底层(第一层)分别按图所示方式固定摆放,从第二层开始,每层的小球自然垒放在下一层之上,第[n]堆第[n]层就放一个乒乓球,以[f(n)]表示第[n]堆的乒乓球总数,则[f(3)=] ;[f(n)=] (答案用[n]表示).
[…]
分析 要求出[f(3)]的值不难,但要求出[f(n)]的表达式,则必需寻找规律,能否从特殊到一般,探索其一般规律;如果[f(n)]的规律难找,可先求第[n]堆乒乓球的每一层的乒乓球的数量规律,然后再求这[n]层的乒乓球数量之和即为所求的[f(n)].
解 法一:利用归纳推理.
设第[n]堆底层的乒乓球的数量为[an],
则[a1=1],[a2=1+2=3],[a3=1+2+3=6],…,
[an=1+2+3+⋯+n=n(n+1)2],
根据题意,第[n]堆乒乓球的数量等于从第1堆开始到第[n]堆每堆最底层球数总和,即
[f(n)=a1+a2+⋯+an=12[(12+22+32+⋯+n2)+(1+2+3+⋯+n)]]
故[f(n)=12(n(n+1)(2n+1)6+n(n+1)2)]
[=n(n+1)(n+2)6].
法二:利用递推关系.
由于第[n]堆底层的乒乓球的数量为
[1+2+3+⋯+n=n(n+1)2=12(n2+n),]
而第2堆乒乓球比第1堆多一层,即多了第2堆的底层,则[f(2)-f(1)=12(22+2)],
第3堆乒乓球比第2堆多一层,即多了第2堆的底层,则[f(3)-f(2)=12(32+3)],
…
第[n]堆乒乓球比第[(n-1)]堆多了一层,即多了第[n]堆的底层,则[f(n)-f(n-1)=12(n2+n).]
以上[n]个不等式相加得
[f(n)-f(1)=12[(22+32+⋯+n2)+(2+3+⋯+n)],]
而[f(1)=1],
故[f(n)=12[(12+22+32+⋯+n2)+(1+2+3+⋯+n)]]
[=12(n(n+1)(2n+1)6+n(n+1)2)]
[=n(n+1)(n+2)6].
法三:利用组合数的性质.
设第[n]堆乒乓球底层的的数量为[an],
则[a1=1],[a2=1+2=3],[a3=1+2+3=6],…
[an=1+2+3+⋯+n=n(n+1)2=C2n+1],
根据题意,第[n]堆乒乓球的数量等于从第1堆开始到第[n]堆每堆最底层球数总和,即
[f(n)=a1+a2+⋯+an=C22+C23+C24+⋯+C2n+1,]
而[C22=C33],
则[f(n)=C33+C23+C24+⋯+C2n+1]
[=C24+⋯+C2n+1=⋯=C3n+2,]
因此[f(n)=n(n+1)(n+2)6].
法四:归纳—猜想—证明.
由于[f(1)=1=1×2×36],[f(2)=4=2×3×46],
[f(3)=10=3×4×56,]…
猜想[f(n)=n(n+1)(n+2)6].
下面用数学归纳法证明该结论.
(1)显然[n=1]时,猜想成立;
(2)假设[n=k]时猜想成立,
即[f(k)=k(k+1)(k+2)6],
当[n=k+1]时,由法二知:
[f(k+1)-f(k)=12[(k+1)2+(k+1)]]
∴[f(k+1)=12[(k+1)2+(k+1)]+f(k)]
[=12[(k+1)2+(k+1)]+k(k+1)(k+2)6]
故[f(k+1)=16(k+1)(k2+5k+6)]
[=16(k+1)[(k+1+1][(k+1)+2],]
所以[n=k+1]时,猜想也成立.
综上,对任意正整数[n]猜想均成立,
因此[f(n)=n(n+1)(n+2)6].
点拨 本题是一道既考查合情推理能力又考查演绎推理能力的题. 寻找第[n]堆乒乓球每一层的数量规律,需要观察、归纳、猜想的思想,再求和时需要严密的逻辑推理. 法三中求和大胆联想到组合数,法四则利用归纳猜想,需要较强的数学领悟能力. 法三、法四供大家参考.
例3 已知[a、b、c∈(0,1)],求证:[(1-a)b、][(1-b)c、][(1-c)a]不能同时大于[14].
证 法一:假设三式同时大于[14],
即[(1-a)b>14,][(1-b)c>14,][(1-c)a>14.]
[∵ a、b、c∈(0,1)],
[∴]三式同向相乘得[(1-a)b(1-b)c(1-c)a>164],
又[(1-a)a≤(1-a+a2)2=14.]
同理[(1-b)b≤14,][(1-c)c≤14.]
[∴ (1-a)b(1-b)c(1-c)a≤164],
这与假设矛盾,故原命题得证.
法二:假设三式同时大于[14],
[∵ 00],
[(1-a)+b2≥(1-a)b>14=12,]
同理[(1-b)+c2>12,][(1-c)+a2>12,]
三式相加得[32>32],这是矛盾的,
故假设错误,所以原命题正确.
点拨 “不能同时大于[14]”包含多种情形,不易直接证明,可用反证法证明,即正难则反.
当遇到否定性、唯一性、无限性、至多、至少等类型问题时,常用反证法.
用反证法的步骤是:
①否定结论[⇒A⇒B⇒C];
②而[C]不合理[与公理矛盾,与题设矛盾,与假设自相矛盾;]
③因此结论不能否定,结论成立.
例4 用数学归纳法证明等式 :
[1-12+13-14+⋯+12n-1-12n=1n+1+1n+2][+⋯+12n]对所以[n∈N]均成立.
证明 (1)当[n=1]时,
左式=[1-12=12],右式=[11+1=12],
∴左式=右式,等式成立.
(2)假设当[n=k(k∈N)]时等式成立,
即[1-12+13-14+⋯+12k-1-12k]
[=1k+1+1k+2+⋯+12k],
则当[n=k+1]时,
[1-12+13-14+⋯+12k-1-12k+12k+1-12k+2]
[=(1-12+13-14+⋯+12k-1-12k)+12k+1-12k+2]
[=(1k+1+1k+2+⋯+12k)+12k+1-12k+2]
[=1k+2+1k+3+⋯+12k+1+(1k+1-12k+2)]
[=1k+2+1k+3+1k+4+⋯+12k+1+12k+2]
[=1(k+1)+1+1(k+1)+2+1(k+1)+3+⋯]
[+1(k+1)+k+12(k+1).]
即[n=k+1]时,等式也成立,
由(1)(2)可知,等式对[n∈N]均成立.
点拨 在利用归纳假设论证[n=k+1]等式成立时,注意分析[n=k]与[n=k+1]的两个等式的差别. [n=k+1]时,等式左边增加两项,右边增加一项,而且右式的首项由[1k+1]变为[1k+2]. 因此在证明中,右式中的[1k+1]应与-[12k+2]合并,才能得到所证式. 因而,在论证之前,把[n=k+1]时等式的左右两边的结构先作分析常常是有效的.
由本例可以看出,数学归纳法的证明过程中,要把握好两个关键之处:一是[f(n)]与[n]的关系;二是[f(k)]与[f(k+1)]的关系.
例5 用数学归纳法证明:
[(1+11)(1+13)(1+15)⋯(1+12n-1)>2n+1][(n≥2,n∈N)].
证明 (1)当[n=2]时,
左式=[(1+11)(1+13)=83=649],右式=[5],
∵ [649>5], ∴[649>5],
即[n=2]时,原不等式成立.
(2)假设[n=k(k≥2, k∈Z)]时,不等式成立,
即[(1+11)(1+13)(1+15)⋯(1+12k-1)>2k+1],
则[n=k+1]时,
左边=[(1+11)(1+13)(1+15)⋯(1+12k-1)(1+12k+1)]
[>2k+1(1+12k+1)=2k+22k+1]
右边=[2k+3],要证左边>右边,
只要证[2k+22k+1>2k+3],
只要证[2k+2>(2k+3)(2k+1)],
只要证[4k2+8k+4>4k2+8k+3,]
只要证4>3.
而上式显然成立,所以原不等式成立,
即[n=k+1]时,左式>右式.
由(1)(2)可知,原不等式对[n≥2,n∈N]均成立.
点拨 运用数学归纳法证明问题时,关键是[n=k+1]时命题成立的推证,此步证明要具有目标意识,注意与最终要达到的解题目标进行分析比较,以此确定和调控解题的方向,使差异逐步减小,最终实现目标完成解题. 在分析[f(k)]与[f(k+1)]的两个不等式,应找出证明的关键点(一般要利用不等式的传递性),然后再综合运用不等式证明的方法. 本题关键是证明不等式[2k+22k+1>2k+3]. 除了分析法,还可以用比较法和放缩法来解决.
例6 已知[f(n)=1+12+13+14+⋯+1n(n∈N),]求证:[n>1]时,[f(2n)>n+22].
证明 (1)[n=2]时,
左式=[f(22)=f(4)=1+12+13+14=2512],
右式=[2+22=2],
∵ [2512>2], ∴ 左式>右式,不等式成立.
[n=3]时,
左式=[f(23)=f(8)=1+12+13+14+⋯+18],
右式=[3+22=52],
左式-右式=[15+17-18>0],
左式>右式,不等式成立.
(2)假设[n=k(k∈N, k≥3)]时不等式成立,
即[f(2k)=1+12+13+14+⋯+12k>k+22],
当[n=k+1]时,
[f(2k+1)=1+12+13+14+⋯+12k+12k+1]
[+12k+2+⋯+12k+1]
[=f(2k)+12k+1+12k+2+⋯+12k+12k项]
[>k+22+12k+1+12k+1+⋯+12k+12k项]
[=k+22+2k2k+1=k+32=(k+1)+22,]
即[n=k+1]时,不等式也成立.
由(1)(2)可知,[n>1, n∈N]时,
都有[f(2n)>n+22].
点拨 注意[f(n)]的意义,它表示连续自然数的倒数和,最后一项为[1n]. 可以通过第一步验证中加强对[f(n)]的理解,本题中验证了[n=]2、3两个数值,正是由于此原因(当然不是必要的). [f(2n)]的表达式应为[f(2n)=]1[+12+13+14+15+⋯+12n-1+12n]. 因此在归纳法证明中,重视第一步的验证工作,许多难题的特殊情形启发我们的思路,甚至蕴含一般情形的方法.
【专题训练九】
1. 下面几种推理过程是演绎推理的是( )
A. 两条直线平行,同旁内角互补,如果[∠A]和[∠B]是两条平行直线的同旁内角,则[∠A+∠B=180°]
B. 由平面三角形的性质,推测空间四面体性质
C. 某校高三共有10个班,1班有51人,2班有53人,三班有52人,由此推测各班都超过50人
D. 在数列[{an}]中,[a1=1,an=12(an-1+1an-1)][(n≥2)],由此推出[{an}]的通项公式
2. 命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是( )
A. 使用了归纳推理
B. 使用了类比推理
C. 使用了“三段论”,但大前提错误
D. 使用了“三段论”,但小前提错误
3. 通过观察下列等式,猜想出一个一般性的结论,并证明结论的真假.
sin215°+sin275°+sin2135°=[32];
sin230°+sin290°+sin2150°=[32];
sin245°+sin2105°+sin2165°=[32];
sin260°+sin2120°+sin2180°=[32].
4. 已知[a、b、c]都为正数,那么对任意正数[a、b]、[c],三个数[a+1b、b+1c、c+1a]( )
A. 都不大于2 B. 都不小于2
C. 至少有一个不大于2
D. 至少有一个不小于2
5. 定义在[R]上的函数[f(x)],满足[f(x+y)=f(x)+f(y)(x、y∈R)],且[f(1 )=2],那么在下面的四个式子:
①[f(1 )+2f(1 )+⋯+nf(1 )];
②[fn(n+1)2];
③[n(n+1 )];
④[n(n+1)f(1 )].
其中与[f(1 )+f(2)+⋯+f(n)]相等的是( )
A. ①③ B. ①②
C. ①②③④ D. ①②③
6. 比较大小[7+6] [8+5],分析其结构特点,请你再写出一个类似的不等式: ;请写出一个更一般的不等式,使以上不等式为它的特殊情况,则该不等式可以是 .
7. 如果命题[P(n)]对[n=k]成立,则它对[n=k+2]也成立. 又若[P(n)]对[n=2]成立,则下列结论正确的是( )
A. [P(n)]对所有自然数都成立
B. [P(n)]对所有正偶数都成立
C. [P(n)]对所有正奇数都成立
D. [P(n)]对所有大于1的自然数都成立
一.选择题:
1.如果数列an是等差数列,则()
A.a1a8a4a5 B.a1a8a4a5 C.a1a8a4a5 D.a1a8a4a
52.下面使用类比推理正确的是()
A.“若a3b3,则ab”类推出“若a0b0,则ab”
B.“若(ab)cacbc”类推出“(ab)cacbc”
abab” (c≠0)ccc
nnD.“(ab)anbn” 类推出“(ab)anbn” C.“若(ab)cacbc” 类推出“
3.有这样一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数”
结论显然是错误的,是因为()
A.大前提错误B.小前提错误C.推理形式错误D.非以上错误
4.有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线b平面,直线a平面,直线b∥平面,则直线b∥直线a”的结论显然是错误的,这是因为()
A.大前提错误B.小前提错误C.推理形式错误D.非以上错误
5.“所有9的倍数(M)都是3的倍数(P),某奇数(S)是9的倍数(M),故某奇数(S)是3的倍数(P).”上述推理是()
A.小前提错B.结论错C.正确的D.大前提错
6.函数yax1的图像与直线yx相切,则a=()A.218B.14C.12D.17.一串白黑相间排列的珠子,按这种规律往下排起来,那么第36颗珠子应是什么颜色的()
A.白色B.黑色C.白色可能性大D.黑色可能性大
8.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖”,乙说:“甲、丙都未获奖”,丙说:“我获奖了”,丁说:“是乙获奖”。四位歌手的话只有两名是对的,则奖的歌手是()
A.甲B.乙C.丙D.丁
9.设 f(x)|x1||x|, 则f[f()] A.121
2 B.0 C.1 2D.110.已知向量a(x5,3), b(2,x),且ab, 则由x的值构成的集合是
A.{2,3}
B.{-1, 6}C.{2}D.{6}
二.填空题.11.下列表述正确的是①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是特殊由到一般的推理;⑤类比推理是特殊由到特殊的推理 12.已知f(x1)
2f(x),猜想f(x)的表达式为,f(1)1(xN*)
f(x)2
13.类比平面几何中的勾股定理:若直角三角形ABC中的两边AB、AC互相垂直,则三角形三边长之间满足关系:ABACBC。若三棱锥A-BCD的三个侧面ABC、ACD、ADB两两互相垂直,则三棱锥的侧面积与底面积之间满足的关系为.14.从11,2343,3+4+5+6+7=5中,可得到一般规律为(用数学表达式)15.函数y=f(x)在(0,2)上是增函数,函数y=f(x+2)是偶函数,则f(1),f(2.5),f(3.5)的大小关系是.三.解答题.11
316 已知△ABC中,角A、B、C成等差数列,求证: =
a+bb+ca+b+c
πππ22
217.若a、b、c均为实数,且a=x-2x+,b=y-2y+,c=z-2z+a、b、c中
236至少有一个大于0.18.用分析法证明:若a>0
a2+22≥a-2.aa
119.在各项为正的数列an中,数列的前n项和Sn满足Sn
11
a n2an
(1)求a1,a2,a3;(2)由(1)猜想数列an的通项公式;(3)求Sn
20.已知f(x)(xR)恒不为0,对于任意x1,x2R 等式fx1fx22f
21.已知ΔABC的三条边分别为a,b,c求证:
x1x2x1x2
f恒成立.求证:f(x)是偶函数.22
abc
1ab1c
高二数学选修1-2推理与证明测试题答案
13.SBCDSABCSACDSADB.14.n(n1)(n2)......(3n2)(2n1)15.f(2.5)>f(1)>f(3.5)
316.(分析法)要证+
a+bb+ca+b+c
a+b+ca+b+c需证: a+bb+c
即证:c(b+c)+a(a+b)=(a+b)(b+c)
即证:c+a=ac+b
因为△ABC中,角A、B、C成等差数列,所以B=60,由余弦定理b= c+a-2cacosB 即b= c+a-ca 所以c+a=ac+b
113因此+
a+bb+ca+b+c
17.(反证法).证明:设a、b、c都不大于0,a≤0,b≤0,c≤0,∴a+b+c≤0,πππ22
2而a+b+c=(x-2y+)+(y-2zz-2x+)
236
=(x-2x)+(y-2y)+(z-2z)+π=(x-1)+(y-1)+(z-1)+π-3,∴a+b+c>0,这与a+b+c≤0矛盾,故a、b、c中至少有一个大于0.18.(分析法).证明:要证
a222≥a+2aa
a2+22≥a+2.aa
∵a>0,∴两边均大于零,因此只需证(12
只需证a++4+4
a22+2)2≥(a++2)2,aa
a
a2+≥a2++2+22(a+),aaa
只需证
a2+a+),只需证a+a2),a2aa2a
即证a+2≥2,它显然是成立,∴原不等式成立.a
19.(1)a11,a221,a32;(2)annn1;(3)Snn.20.简证:令x1x2,则有f01,再令x1x2x即可 21.证明:设f(x)
x,x(0,)设x1,x2是(0,)上的任意两个实数,且x2x10,1x
f(x1)f(x2)
x1xx1x2
2
1x11x2(1x1)(1x2)
x
在(0,)上是增函数。1xabc
由abc0知f(ab)f(c)即.
1ab1c
一. 选择题:
1.下列推理是合情推理的是()
①由圆的性质类比出球的性质;
②由直角三角形、等腰三角形、等边三角形的内角和是180,由此推出三角形的内角和是180; ③ab,bc,则ac;
④三角形内角和是180,四边形的内角和是360,五边形的内角和是540,由此得凸n 边形的内角和是(n2)180
A.①②B.①③④C.①②④D.②④
2.有一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数”,结论显然是错误的,是因为()
A.大前提错误B.小前提错误C.推理形式错误D.非以上错误
3.数列1,3,6,10,的一个通项公式是(A.ann2n1B.an)C.ann(n1)2n(n1)2D.n1
24.若a,b,c满足cba,且ac0,那么下列选项中不一定成立的是()
A.abac
B.c(ba)0C.cbca 22D.ac(ac)0 5.已知aR,不等式x
A.2n14a2,x23,,可推广为xnn1,则a的值为()xxxB.n2C.22(n1)D.n n
6.设a,b,c为整数,则a111,b,c这三个数()bca
A.都不大于2B.至少有一个不大于2C.都不小于2D.至少有一个不小于2
7.要证a2b21a2b20,只要证明()
a4b
40A.2ab1ab0B.ab122222
(ab)2
1a2b20D.(a21)(b21)0 C.2
8.用反证法证明命题“若整数系数一元二次方程axbxc0(a0)有有理数根,那么a,b,c中至少有一个是偶数时”下列条件假设中正确的是()
A.假设a,b,c都是偶数B.假设a,b,c都不是偶数2
C.假设a,b,c中至多有一个偶数D.假设a,b,c中至多有两个偶数
9.平面上有条直线,期中任意的两条不平行,任意三条不共点。f(k)表示nk时平面被分成的区域数,则f(k1)f(k1)()
A.kB.k1C.k1D.k2
10.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或是丙获奖。”乙说:“甲、丙都未获奖。”丙说:“我获奖了。”丁说:“是乙获奖了。”四位歌手的话只有两句是对的,则获奖歌手是()
A.甲B.乙C.丙D.丁
二. 填空题:
11.观察下列的图形中小正方形的个数,则第6个图中有个小正方形
.x2y
212.若P0(x0,y0)在椭圆221外,则过Po作椭圆的两条切线的切点为P1、P2,则直线P1P2(称为ab
xxyy切点弦P1P2)的方程是0
2021.那么对于双曲线则有如下命题:若P0(x0,y0)在双曲线ab
x2y
221(a>0,b>0)外,则过Po作双曲线的两条切线的切点为P1、P2,则切点弦P1P2的直线2ab
方程是.
13.如果a+bb>ab+ba,则a、b应满足的条件是________.
14.若0a1,0b1,且ab,则在ab,2,a2b2,2ab中最大的是________.
15.半径为r的圆的面积Srr,周长Cr2r,若将r看作0,上的变量,则2r2r
2①.①式可用语言叙述为:圆的面积函数的导数等于圆的周长函数.
对于半径为R的球,若将R看作0,上的变量,请你写出类似于①的式子:______________________________________②;
②式可用语言叙述为_______________________________.三. 解答题:
16.用三段论证明函数f(x)x2x在,1上是增函数.2
17.已知:sin30sin90sin1502223 2
sin25sin265sin2125
18.已知a,b,c均为实数,且ax2y
求证:a,b,c中至少有一个大于0.2通过观察上述两等式的规律,请你写出一般性的命题,并给出的证明.2,by22z3,cz22x6,19.已知abc, 求证:
114.abbcac
220.设a,b,c为任意三角形三边长Iabc,sabbcac.试证:I4s.21.通过计算可得下列等式:
221221
13222221
4232231
┅┅
(n1)2n22n1
将以上各式分别相加得:(n1)2122(123n)n.即:123nn(n1)2
2222类比上述求法:请你求出123n的值.选1-2第二章《推理与证明》单元测试题
命题人:实验中学李红英
参考答案
一. 选择题
1——5 CCCCD6——10 DDBBC
1.C
2.C
3.C提示:an123n
4.C
5.D提示:xn(n1)2axxxaa nnnnnnnxxn
6.D提示:反证法
7.D提示:对左边分解因式可得.8.B
9.B
10.C提示:假设获奖人分别为甲、乙、丙、丁一一验证.二. 填空题
11.28提示:123728 12.x0xy0y21 a2b
13.a,b0,且ab提示如下:
(aab)(abba)a(ab)b(ba)=
14.ab a2a0
43215.R4R球的体积函数的导数等于球的表面积函数. 3
三. 解答题
16.证明:若对于区间I上任意的x1,x2,且x1x2,都有f(x1)f(x2)0,则f(x)在I 上单调增.任取任意的x1,x2(,1,且x1x2,2f(x1)f(x2)x122x1x22x2(x1x2)(2x1x2)0
所以f(x)在(,1是单调增函数.17.解: 一般性的命题为sin(60)sinsin(60)2223 2
1cos(21200)1cos21cos(21200)证明:左边 222
3[cos(21200)cos2cos(21200)]232
所以左边等于右边
18.证明:假设a,b,c都不大于0,即a0,b0,c0,得abc0,而abc(x1)2(y1)2(z1)2330,即abc0,与abc0矛盾,a,b,c中至少有一个大于0.19.证明:acacabbcabbc abbcabbc
2
bcab2abbcb,4(abc)cacac1144,.abbcabbcac
220.证明:要证I4S,即证(abc)24(abbcac)
只需证 a2b2c22(abacbc)
即证abc2ab2bc2ac0
即证(a2abac)(b2bcab)(c2acbc)0只需证abc,bac,cba.因为a,b,c是三角形的三边,所以以上都成立,所以原命题得证.21.解:21313113232321 332332222
4333332331┅┅
(n1)3n33n23n1
将以上各式分别相加得:(n1)13(123n)3(123n)n 所以: 123n
1.【江苏省通州高级中学2013-2014学秋学期期中考试高三数学试卷】在△ABC中,D为AB上任一点,h为AB边上的高,△ADC、△BDC、△ABC的内切圆半径分别为r1,r2,r,则有如下的等式恒成立:ADBDAB2CD.在三棱锥P-ABC中D位AB上任一点,r1r2rh
h为过点P的三棱锥的高,三棱锥P-ADC、P-BDC、P-ABC的内切球的半径分别为r1,r2,r,请类比平面三角形中的结论,写出类似的一个恒等式为
___.2.【江苏省兴化市安丰高级中学2014届高三】在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为k,即k5nknZ,k0,1,2,3,4.给出如下四个结论:① 20133;② 22;③ Z0∪1∪2∪3∪4;④ 整数a,b属于同一“类”的充要条件是“ab0”.其中,正确结论的个数为.
一、准备知识
立体几何中的垂直问题通常有三类:证线与线垂直、线与面垂直、面与面垂直.在解决这些问题之前首先要熟记三个定理:
定理1如果平面外一条直线和一个平面内的两条相交直线垂直, 那么这条直线垂直于这个平面. (简称:线线垂直, 线面垂直)
定理2如果一条直线与一个平面垂直, 那么这条直线与这个平面内的任意一条直线都垂直. (简称:线面垂直, 线线垂直)
定理3如果一个平面经过另一个平面的一条垂线, 那么这两个平面互相垂直. (简称:线面垂直, 面面垂直)
其次, 要证明垂直问题就要熟知常用于推导垂直关系的条件, 除了题目直接告知的垂直关系, 还有以下几种常用来推导垂直的条件: (1) 等腰 (或等边) 三角形底边上的中线垂直于底边; (2) 正方形 (或菱形) 的对角线互相垂直; (3) 三边满足勾股数a2+b2=c2的三角形是直角三角形, 等等.
最后, 明确一个基本原则:在推理过程中如果要寻找某条直线, 总是优先考虑已有垂直关系的线.
二、实例分析
1. 证线面垂直
例1已知正方体ABCD-A1B1C1D1, O是底ABCD对角线的交点, 求证:A1C⊥平面AB1D1.
从结论出发, 我们可以作出如下分析:
步骤1:要证线面垂直, 只要证线线垂直.首先在平面AB1D1的平面内找出两条相交直线与A1C垂直.我们的原则是优先考虑已有垂直关系的线, 在正方形中隐含着对角线互相垂直的关系, 平面AB1D1的三条边又都是正方形的对角线, 所以任选一条边, 其他的边只要同理证明就可以了, 这里我们选B1D1.
步骤2:下面证A1C⊥B1D1, 只要让B1D1垂直于一个平面, 这个平面要包含A1C, 又要包含它已经垂直的线A1C1, 很容易得到是平面A1C1C.
(记作:A1C⊥B1D⇐B1D1⊥平面A1C1C)
步骤3:重复步骤1, 要证B1D1⊥平面A1C1C, 只要证明B1D1与平面里两条相交直线垂直.已知B1D1与A1C1垂直, A1C是需要证明与之垂直的线, 那么只剩下CC1.恰好CC1是正方体的侧棱, 它垂直于面A1B1C1D1, 易证CC1⊥B1D1.
以上推理的思维流程图:
2. 证线线垂直
例2如右图, 已知矩形ABCD, 过A作SA⊥平面AC, 再过A作AE⊥SB交SB于E, 过E作EF⊥SC交SC于F.求证:AF⊥SC.
分析步骤1:要证线线垂直, 只要证线面垂直.AF和SC中先选出一条线, 让其垂直一个面.本着优先考虑已有垂直关系的线这一原则, 我们选择SC.下面寻找SC垂直的平面, 它要包含SC已经垂直的线EF, 也要包含它需要垂直的线AF, 那么就算不看图, 我们也能找出这个平面AEF.
(记为:AF⊥SC⇐SC⊥平面AEF)
步骤2:下面证线面垂直, 只要证线线垂直.欲证SC⊥平面AEF, 只要在平面里找出两条相交直线与SC垂直.已知SC已经垂直于EF, 而AF是需要证明与SC垂直的线因此不能用, 所以只剩下AE.
步骤3:重复步骤1, 要证明SC⊥AE, 就要确定其中一条线, 让其垂直一个面.由于SC的垂直关系在前面用过了, 所以这次选AE.AE所垂直的平面要包含它已经垂直的直线SB, 还要包含它需要垂直的直线SC, 所以可确定平面SBC.
(记为:SC⊥AE⇐AE⊥平面SBC)
步骤4:重复步骤2, 要证AE⊥平面SBC, 只要在平面里找出两条相交直线垂直于AE.AE已经垂直于SB, 而SC是需要证明和AE垂直的线, 不能选, 那么只剩下BC可能与AE垂直.
步骤5:重复步骤3, 要证AE⊥BC, 先确定一条线.由于AE的垂直关系前面已经用过, 所以这次选BC.BC所垂直的平面要包含AE, 还要包含它已经垂直的线AB.所以BC⊥平面ABE, 即BC⊥平面SAB.
(记为:AE⊥BC⇐BC⊥平面SAB)
步骤6:重复步骤4, 要证BC⊥平面SAB, 只要在平面里找出两条相交直线垂直于BC.BC已经垂直于AB, 平面里与AB相交的直线有AE和SA, AE是需要证明的线不能用, 只剩下SA.而题目已知SA⊥平面ABCD, 易证SA⊥BC.
以上推理的思维流程图:
3. 证面面垂直
例3如图, 已知AB$平面ACD, DE∥AB, △ACD是正三角形.求证:平面BCE$平面CDE.
分析要证明面面垂直, 只要在其中一个面里找出一条直线, 使它垂直于另一个面.但是题目中的垂直关系都集中在平面ACD中, 等腰△ACD的中线AF⊥CD, 同时AF⊥AB.因为AB∥DE, 所以AF⊥DE.易证AF⊥平面CDE.因此只要将AF移到平面BCE中就可以了.取CE中点G, 连接BG, 易证BG∥AF, 命题得证.
思维流程图:
三、一点感悟
证明垂直问题是立体几何中的重要内容, 通过垂直的性质和判定定理, 可以实现线面关系的转化.让学生学会从结论出发逆向推理, 会减少思维混乱, 无从下手的状况, 使思维更具条理性.本文所述的方法不以理解为技法, 而是对垂直关系的源头探求, 探求的依据就是性质和定理.
一、考情分析
从2007-2014年高考广东数学的推理和证明的真题分析可知:考查演绎推理、数学归纳法、直接证明的地位保持不变,合情推理和间接证明考得较少(2007年第12题),形成了广东“特色”的推理和证明命题特点.这些与高考的《考试说明》是吻合的,我们只要认真分析下面的考点介绍就会对高考的考试要求更明确了,只有这样,我们才可以真正地高效备考,才可以有效突破推理和证明这类题型.
二、考点介绍
(一)合情推理与演绎推理
1. 了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用.
2. 了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理.
3. 了解合情推理和演绎推理之间的联系和差异.
(二)直接证明与间接证明
1. 了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程、特点.
2. 了解间接证明的一种基本方法——反证法;了解反证法的思考过程、特点.
(三)数学归纳法
了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题.
三、考点预测
针对《考试说明》的要求,并结合考题可能的变化,本文大胆地对推理和证明的具体考点进行预测和分析,供考生们复习时参考.
(一)热点
热点一:考查演绎推理
例13.“底面是正三角形,侧面均为等腰三角形的棱锥是正三棱锥”“侧面都是全等的等腰三角形的三棱锥是正三棱锥”“三棱锥的侧面与侧面所成的二面角相等底面是正三角形的三棱锥是正三棱锥”… 为什么说此类问题都是错误的?
解析:如图, 底面ABC是正三角形, 侧棱SA⊥底面△ABC,且SA=AB, 这时△SAB、△SAC都是等腰直角三角形, 而△SBC是等腰三角形, 显然三棱锥S-ABC不是正三棱锥.
在长方体ABCD-A1B1C1D1中, AB=BC≠C1C, 则三棱锥C1-A1BD的四个面都是全等的等腰三角形, 显然显然三棱锥C1-A1BD也不是正三棱锥.
设S-ABC是正三棱锥, SA=SB=SC=2, AB=BC=CA=1, 以C为圆心,1为半径在平面PAC内作圆弧与PA交于一点A′, 连BA′, 则三棱锥S-A′BC中, △A′BC是正三角形,三棱锥的侧面与侧面所成的二面角相等(是原来正三棱锥S-ABC的侧面与侧面所成的二面角),显然, S在底面A′BC的射影不是△A′BC的中心, 故三棱锥S-A′BC不是正三棱锥.
(二)冷点不可忽视
不变是暂时的,变才是永恒的,也可以说,冷点与热点是相对的.鉴于广东卷多年来少考合情推理和间接证明的情况,适当的调整是有可能的,所以全面复习才是根本,做好准备才是坦途.
冷点一:合情推理
合情推理是根据已有的事实和正确的结论(包括定义、公理、定理等)、实验和实践的结果,以及个人的经验和直觉等推测某些结果的推理过程,归纳和类比是合情推理常用的思维方法. 在解决问题的过程中,合情推理具有猜测和发现结论、探索和提供思路的作用,有利于创新意识的培养.合情推理是特殊到特殊的推理方法.
1. 归纳
点评:解决这类问题要善于观察,找出特征和规律.
2. 类比
根据两个(或两类)对象之间在某些方面的相似或相同,推演出它们在其它方面也 相似或相同,这样的推理称为类比推理.包括概念(定义)类比,运算类比,性质类比,结论类比,方法类比等等.
反思归纳:应用合情推理应注意的问题:①在进行归纳推理时,要先根据已知的部分个体,把它们适当变形,找出它们之间的联系,从而归纳出一般结论. ②在进行类比推理时,要充分考虑已知对象性质的推理过程,然后类比推导类比对象的性质.注意:归纳推理关键是找规律,类比推理关键是看共性。
冷点二:间接证明
点评:牛顿曾经说过:“反证法是数学家最精当的武器之一.”作为武器,在数学教材中,都有反证法的渗透,特别是在推理与证明的内容里也有较多反证法的例题和习题,所以高考中出些有关反证法的问题,是容易理解的,也是非常有必要的.
反思归纳:适合用反证法证明的四类数学命题:①唯一性命题;②结论涉及“至多”“至少”“无限”的命题;③否定性命题;④直接证明较繁琐或困难的命题.
总之,归纳和类比是合情推理的主要形式,在相关问题特别是在某些选择题和填空题的求解中起着十分重要的作用,它深刻地揭示了特殊与特殊的关系、特殊与一般的思想.因此,高三复习中要善于运用归纳和类比进行推理,逐步学会发现,学会创造.
演绎推理是一种必然性推理,其基本模式是“三段论”.运用演绎推理证明问题时,应注意只有在大前提、小前提和推理过程都正确的前提下,得出的结论才一定正确.
反证法是一种间接的证明问题的方法,一般地,欲证命题的结论是以“最多”“至少”“唯一”等形式或以“不可能”“不存在”等否定形式给出时,常用反证法. 当一个命题从正面证明有困难时,不妨想想反证法.
(作者单位:福建省永定县城关中学)
【推理证明测试题】推荐阅读:
高中数学推理与证明测试题09-21
选修1-2:高二文科推理与证明测试题11-07
类比推理和证明09-17
高二推理证明复习01-07
文科推理与证明05-13
推理与证明习题专题10-24
推理与证明的关系01-04
高考必看:推理与证明10-06
高二期末复习推理与证明10-13