一元一次方程的应用

2025-05-09 版权声明 我要投稿

一元一次方程的应用(推荐10篇)

一元一次方程的应用 篇1

一、选择题

1.解方程6x+1=-4,移项正确的是()

A.6x=4-1B.-6x=-4-1C.6x=1+4D.6x=-4-1

2.解方程-3x+5=2x-1, 移项正确的是()

A.3x-2x=-1+5B.-3x-2x=5-1C.3x-2x=-1-5D.-3x-2x=-1-5

3.下列方程变形正确的是()

A.由-2x=6, 得x=3

B.由-3=x+2, 得x=-3-2

C.由-7x+3=x-3, 得(-7+1)x=-3-3

D.由5x=2x+3, 得x=-1

二、填空题

4.已知2是关于x的方程

5.方程3x-2a=0的一个解,则2a-1的值是.21 x+3=5的解是.2

6.3xn+2-6=0是关于x的一元一次方程,则x=.7.关于x的方程5ax-10=0的解是1,则a=.三、解答题

8.解下列方程.

(1)6x=3x-7(2)5=7+2x

一元一次方程的应用 篇2

在学习一元一次方程的过程中,有的同学有时会产生困惑, 或遇到一些困难。其实,我们只要了解一元一次方程的特点,了解其解题步骤,许多困难会迎刃而解。

列一元一次方程解决实际问题的一般步骤,一般可概括为“审、设、找、列、解、答”六步。即:①第一步,审:审题,分析题中已知什么,要求什么。②第二步,找:找出能够表示应用题全部含义的一个相等关系,根据实际情况来定,先用语言描述写到一边。③第三步,设:一般求什么就设什么为未知数,有时根据等量关系必须先间接设一个未知数,设时一般带单位。④第四步,列:把等量关系用含有未知数的方程表示,注意单位互化。⑤第五步,解:解所列的方程,求出未知数的值。⑥第六步,答:作答前先检验所求出的解是否合乎实际意义,且是不是方程的解,再写答(包括单位名称)。

一、商品利润问题

在这类问题中,要明确几个概念:进价和标价是不同的,标价往往比进价高许多,商家一般是把进价按一定比例提高后,作为标价。为了吸引顾客购买,他们有时又打“几折”销售,而所谓“几折”就是按标价的百分之几十卖出。如打七折也就是售价变为标价的70%,由于标价往往高于进价(成本价),故打折后一般商家不会赔本。这类问题的等量关系是:商品的售价 = 商品的标价×折扣率;商品的利润 = 商品的售价 - 商品的进价;利润率 = 利润÷成本。

例1:某家电城将某品牌的超级VCD按进价提高35%后,打出“九折酬宾,外送50元”的广告,结果每台仍然盈利208元。那么,每台超级VCD的进价是多少元?

分析:首先要弄清楚标价是按进价提高了35%,即标价 = 进价×(1+35%),售价是标价打九折后减去50元。其方程模型是:超级VCD的售价 - 超级VCD的进价 = 超级VCD的利润。解:设每台超级VCD的进价是x元,则 [0.9 (1+35%)x-50]-x=208,解得x=1200。答:每台超级VCD的进价是1200元。

二、利息问题

这类问题的基本等量关系是:利息 = 本金×利率×期数,其中期数是指存入的时间,本金 + 利息 = 本息和。

例2:某年1年期储蓄年利率为1.98%,所得利息要交纳20% 的利息税。某储户有一笔1年期定期储蓄,到期纳税后得利息396元,问储户有多少本金?

分析:本题中的数学模型是利息减去交纳的税金后得现金是396元,若设储户有本金x元,则年利息为1.98%元,交纳税金为20%×1.98%x元,故根据题意可进行解答。

解:设储户有本金x元,则1.98%x-20%×198‰=396,解得x=25000。答:储户有本金25000元。

三、工程问题

这类问题的基本等量关系是:工作量 = 工作效率×工作时间。一般把总工作量看作“1”,各个工作量之和等于总工作量。

例3:一项工作,甲独立完成要3小时,乙独立完成要5小时, 若两人合作完成这项工作的4/5,需要几小时?

分析:本题中有三个基本量:甲、乙独立完成此项工作的时间和两人合作完成的工作量。甲、乙两人完成的工作量之和等于两人合作完成的工作量,这是解题的关键所在。

解:设合作完成这项工作的4/5需要x小时,由题意,得 (1/3+1/5)x=4/5,解这个方程,得x=1.5。答:需要1.5小时完成。

四、行程问题

这类问题是研究在匀速运动条件下的路程、速度和时间三个量之间的关系。这里有一个固有的相等关系:路程 = 速度×时间。这类问题又分为相向而行(即相遇问题)、同向而行(即追及问题)和反向而行等常见类型。

例4:甲、乙两人在笔直的跑道上练习长跑,两人相距100米, 甲的速度为7米 / 秒,乙的速度为6米 / 秒。①若两人同时出发, 相向而行,经过多长时间相遇?②若两人同时出发,同向而行,经过多长时间甲追上乙?③若两人同时出发,反向而行,经过多长时间两人相距360米?

分析:可画线段图,找等量关系。①画出问题1的线段分析图 (篇幅所限,图略),得等量关系:甲走的路程 + 乙走的路程 =100米。②画出问题2的线段分析图(篇幅所限,图略),得等量关系: 甲走的路程 - 乙走的路程 =100米。③画出问题3的线段分析图 (篇幅所限,图略),得等量关系:甲走的路程 + 乙走的路程 +100米 =360米。

在行程问题中,只要画出了线段分析图,就可以根据图示列出方程解决实际问题了。

生活中的一元一次方程应用 篇3

一、 比赛类

例1 (2015·云南)为有效开展阳光体育活动,云洱中学利用课外活动时间进行班级篮球比赛,每场比赛都要决出胜负,每队胜一场得2分,负一场得1分. 已知九年级一班在8场比赛中得到13分,问九年级一班胜、负场数分别是多少?

【分析】设胜了x场,那么负了(8-x)场,根据得分为13分可列方程求解.

解:设胜了x场,那么负了(8-x)场,根据题意得:2x+1×(8-x)=13,

解得:x=5, 8-x=3.

答:九年级一班胜、负场数分别是5和3.

【方法提升】解比赛类应用题的关键是设出胜的场数,以总分数作为等量关系列方程求解.

二、 商品销售类

例2 (2015·江苏泰州)某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件.商场准备采取促销措施,将剩下的衬衫降价销售.请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?

【分析】设每件衬衫降价x元,根据销售完这批衬衫正好达到盈利45%的预期目标,列出方程求解即可.

解:设每件衬衫降价x元,根据题意,得:

120×400+(120-x)×100=80×500×(1+45%),

解得:x=20.

答:每件衬衫降价20元时,销售完这批衬衫正好达到盈利45%的预期目标.

【方法提升】解商品销售类应用题的关键是弄清商品的进价、售价、利润、折扣、利润率等之间的数量关系,根据题目给出的条件,找出合适的等量关系列方程求解.

三、 交通运输类

例3 甲乙两人骑自行车,同时从相距65千米的两地相向而行,甲的速度为17.5千米/小时,乙的速度为15千米/小时,经过几个小时甲乙两人相距32.5千米.

【分析】本题容易漏解,题中两人相距32.5千米存在两种情况,相遇前相距32.5千米或相遇后相距32.5千米,所以应进行分类讨论.

解:设经过x小时两人相距32.5千米,分两种情况讨论:

(1) 相遇前两人相距32.5千米,根据题意得:17.5x+15x=65-32.5,

解得:x=1;

(2) 相遇后两人相距32.5千米时,根据题意得:17.5x+15x=65+32.5,

解得:x=3.

答:经过1或3小时甲乙两人相距32.5千米.

【方法提升】解决实际问题时要正确理解题目中给的已知条件中的不确定的数量、结论等,为保证答案全面、完整,需要分情况解决.

四、 电费水费类

例4 (2015·湖北省孝感)某市为提倡节约用水,采取分段收费. 若每户每月用水不超过20 m3,每立方米收费2元;若用水超过20 m3,超过部分每立方米加收1元. 小明家5月份交水费64元,则他家该月用水_______m3.

【分析】20立方米时交40元,题中已知五月份交水费64元,即已经超过20立方米,所以64元水费由两部分构成,列方程即可解答.

解:设该用户居民五月份实际用水x立方米,

根据题意,得: 20×2+(x-20)×3=64,

解得:x=28.

故答案是:28.

【方法提升】在解水费电费分段收费类应用题时往往可以设其中一部分数量为x,然后表示出剩下的一部分数量,再根据水费电费数量关系列出方程求解.

五、 古代数学问题

例5 (2015·浙江嘉兴)公元前1700年的古埃及纸草书中,记载着一个数学问题:“它的全部,加上它的七分之一,其和等于19.”此问题中“它”的值为_______.

【分析】设“它”为x,根据它的全部,加上它的七分之一,其和等于19列出方程,求出方程的解得到x的值,即可确定出“它”的值.

【方法提升】解古代数学问题时要抓住题目中出现的关键词、能够体现其数量关系的句子,将其转化成数学语言,构建出数学模型,列出方程.

【试一试】

1. (2015·厦门)某商店举办促销活动,促销的方法是将原价x元的衣服以

x-10元出售,则下列说法中,能正确表达该商店促销方法的是( ).

A. 原价减去10元后再打8折

B. 原价打8折后再减去10元

C. 原价减去10元后再打2折

D. 原价打2折后再减去10元

2. 学校组织一次有关世博的知识竞赛共有20道题,每一题答对得5分,答错或不答都倒扣1分,小明最终得76分,那么他答对_______题.

3. 父子俩在同一单位工作,父亲从家到单位需用30 min,儿子走这段路只用了20 min,若父亲比儿子早出发5 min,则儿子追上父亲需要_______min.

nlc202309012032

4. 爷爷与孙子下了12盘棋(未出现和棋)后,得分相同,爷爷赢一盘记1分,孙子赢一盘记3分,则爷爷赢了_______盘,孙子赢了_______盘.

5. (2015·怀化)小明从今年1月初起刻苦练习跳远,每个月的跳远成绩都比上一个月有所增加,而且增加的距离相同. 2月份、5月份他的跳远成绩分别为4.1 m、4.7 m. 请你算出小明1月份的跳远成绩以及每个月增加的距离.

6. 民航规定:乘坐飞机普通舱旅客一人最多可免费携带20千克行李,超过部分每千克按飞机票价的1.5%购买行李票. 一名旅客带了40千克行李乘机,机票连同行李费共付1 170元. 机票的价钱是多少?

7. 请根据图中给出的信息,求出大量筒中水的高度.

8. 古代数学问题:

巍巍古寺在山林,不知寺内几多僧;

三百六十四只碗,看看用尽不差争;

三人共食一碗饭,四人共吃一碗羹;

请问先生明算者,算来寺内几多僧?

9. (2015·深圳)右表为深圳市居民每月用水收费标准.(单位:元/m3)

(1) 某用户用水10立方米,共交水费23元,求a的值;

(2) 在(1)的前提下,该用户5月份交水费71元,请问该用户用水多少立方米?

10. 王刚到书店帮同学们买书,售货员告诉他,如果花20元钱办理会员卡,将享受八折优惠.

(1) 王刚预计要到书店买80元书,他是否值得办卡?

(2) 在什么情况下,办会员卡与不办会员卡买书的费用一样?

(3) 当王刚买标价共计200元的书时,怎么做合算,能省多少钱?

【参考答案】

1. B 2. 16 3. 10 4. 9 3

5. 解:设小明1月份的跳远成绩为x m,根据题意,得:4.7-4.1=3(4.1-x),解得:x=3.9. 则每个月的增加距离是4.1-3.9=0.2(m).

答:小明1月份的跳远成绩是3.9 m,每个月增加的距离是0.2 m.

6. 解:设该旅客机票票价为x元,根据题意,得:x+(40-20)×1.5%x=1 170,

解得:x=900.

答:该旅客的机票价为900元.

7. 设大量筒中水的高度为x cm,根据题意,得:π×52x=π×42(x+6),解得:x=10.

答:大量筒中水的高度为10 cm.

8. 分析:山林中有一个古寺,寺里共有364个碗,平均三个僧人共用一个碗吃饭,四个僧人共用一个碗喝汤,试问寺中有多少个僧人?

等量关系:吃饭用的碗+喝汤用的碗=364,

解:设寺中有x个僧人,根据题意,得

+=364 ,解得:x=624.

答:寺中有624个僧人.

9. 解:(1) a=2.3.

(2) 设该用户用水量为x立方米.

∵用水22立方米时,水费为22×2.3=50.6<71,∴x>22,∴22×2.3+(x-22)×(2.3+1.1)=71,

解得:x=28.

答:该用户用水28立方米.

10. (1) 不值得办卡;

(2) 当买标价为100元的书时,办会员卡与不办会员卡买书的费用一样;

(3) 当王刚买标价共计200元的书时,办会员卡合算,能省20元.

(作者单位:江苏省如皋市实验初级中学)

《一元一次方程的应用》教学反思 篇4

方程是刻画现实世界的一个有效数学模型,是从事生产、生活和继续学习数学的必备知识;是初等代数的重要内容;方程的思想是重要的数学思想方法,可以帮助学生更好地探求客观世界的规律,形成科学的世界观和正确的价值观。为了进一步理解学习方程的目的,本章节提供了几个实际问题,学生通过分析,就能初步体会到方程作为实际问题的数学模型的作用。方程就是将众多实际问题“数学化”的一个重要模型。因此,教科书从学生熟悉的实际问题开始,提供了现实、有趣、富有挑战性的学习素材,创设了丰富的问题情景,展开利用方程解决实际问题的学习,认识到方程的出现源于解决实际问题的需要,使学生体会学方程的意义和作用。

折扣问题,学生在小学阶段已有所接触和认识,并且已经知道“几折”所表示的意义,而且学会了用算术方法计算一些简单的打折销售问题,如:已知原价和折扣,求售价等;但对于较复杂的打折销售问题,教材中是作为思考题出现的。因而对于绝大多数学生而言,通过建立等量关系来分析一些较复杂的打折销售问题,还存在一定困难。教材七年级(上)在学习了方程后,紧接着就是较多课时的列方程解应用题,这样安排的目的,一是让学生充分感受到列方程解答应用题的优越性;另一方面也更好地体现了数学是为解决实际问题而服务的。

在上本节课之前,我提前布置了社会调查作业,让学生深入商场、超市等,感受打折销售的现实情景,了解商品打折的有关情况,以及商品标价、售价、折数、利润等有关知识,从而进一步了解利润、售价、进价之间的关系。同时要求学生在感受、体验的过程中能提出数学问题。

教学开始,我不是急于向学生讲解知识,而是让学生来汇报自己调查中的收获,一些概念的引入,公式的给出是学生在体验中获得的。对于一些数学问题,也是建立在学生的了解上,通过提问的方式,层层递进,把学生引向他们的“最近发展区”,使他们的思维始终处于积极活跃的状态,让他们带着愉快的心情跨进知识的大门,这样就很自然的把学习新知转化成了一种内在的需求,从而促使学生对知识的渴求,进而主动地投入到自主学习的过程中去。设计问题串,提问是层层递进,而且利用算术方法就能解决,学生就会有一种“跳一跳,就能摘到桃子”的感觉。本节课有三个收获:

一是我根据教材特点,以及新的教学理念,将学生的学习视野由课内引向课外,课前组织学生进行课外调查,了解有关商场打折销售的情况,为课堂教学作好了知识和心理的充分准备。这样学生既丰富了社会知识,又为数学学习储备了原料,符合新课改的“引导学生自主探索,培养学生的创新精神”。

二是课堂教学中如利润率如何计算等一些问题放手让学生探索、组织小组合作讨论,师生共同归纳解决。这样,学生不仅掌握了运用一元一方程解有关打折销售的数学问题的策略和方法,还培养了学生提出问题,解决问题的能力,提高了学生主动适应社会的意识和能力。

三是多媒体在教学中的应用比较到位,把学生看得见摸得着的生产生活中的实际问题活灵活现的呈现在学生面前。我想在新课程实施中,多媒体教学技术不光作为给学生演示的工具,而应该成为改变学生学习方式的有效手段。

当然教学中也面临着一些问题,如:从算式到方程的过渡我没有加以比较,学生没有深刻的领会方程的优越性;学生的合作探究比较局限,应进一步提高让学生探究交流合作的意识。同时,对于教学我还有一些感触:

1、可以尝试让学生把练习编成小品表演,这样一来趣味性强,且人人皆知。那身临其境的场面,呈现给学生刺激性的数学信息,引发学生学习数学的兴趣,启迪思维,激发学生的好奇心、求知欲,唤醒学生强烈的问题意识,使课堂产生愉快的学习气氛。情境教学改变了原来数学课堂的沉闷和枯燥,它拉近了学生与老师之间的心理距离、拉近了学生之间的心理距离、拉近了学生与教材之间的心理距离,使学生很快能够“入境”。创设生动活泼的教学情境能够不断提高课堂的学习效率,使全体学生都主动参与到教学过程中来。

数学一元一次方程的应用教学反思 篇5

一、认真审题,重视应用题数量关系的分析。

审题是正确解题的前提。学生往往对审题拘于形式,拿到题目就把题中数字简单组合,导致错误。应用题是有情节、有具体内容和问题的,所以首先要加强学生“说”的培养,理解题意。有些应用题的叙述较为抽象、冗长,可引导学生将题目的叙述进行简化,抓住主要矛盾,说出应用题的已知条件和问题。其次要加强关键词句的观察,理解题意。有时候仅一字之差,题目的数量关系就不同,解法也有差异。

二、加强解题思路训练,提高解题能力。

教学不仅要使学生学到知识,还要重视学生获得知识的思维过程。所以在应用题教学中要以指导思考方法为重点,让学生掌握解答应用题的基本规律,形成正确的解题思路。如采用对应的思想方法、比较法、逆向思考、变式法、感知规律法等等。在教学中摸清学生对应用题的思维脉络,了解思维会从哪里起步,向哪个方向发展,将会在哪里受阻,以便点拨帮助学生克服障碍,及时引导学生向预定的目标前进。此外,多进行改变问题,改变条件的训练,使学生排除解题的固定摸式,以培养学生思维的灵活性。

三、充分发挥线段图的直观教学作用。

苏霍姆林斯基指出:“画线段图不仅是表象和概念加以具体化的手段,也是一种使学生进行自我智力教育的手段。”线段具有一定的直观性,能够化抽象为具体,有效地揭露隐藏着的数量关系,掌握数量。例如在“比多比少”的应用题中,通过线段对比,结果就十分明显。

四、充分利用电教手段,帮助学生解答应用题。

一元一次方程的应用 篇6

【设计说明】:

一、方程对学生来说,是算术思维的一种提升,是数的认识上的一个飞跃,在用字母表示未知数的基础上,使学生解决实际问题的数学工具,从列出算式解发展到列出方程解,从未知数只是所求结果到未知数参与运算,思维空间增大,这又是数学思想方法上的一次飞跃,它将使学生运用数学知识解决实际问题能力提高到一个新的水平。但在学生的学习过程中,部分学生抱有畏难情绪,不愿意接受方程思想,更多的依赖于小学的算术方法解决问题,学生的这种行为源于几个原因:①对方程比较陌生,而对算术驾轻就熟,因此造成畏难情绪;②没有在实践过程中,充分认识到方程的优越性.要想解决学生的畏难情绪要从学习方程的必要性入手使学生认识到:①方程与我们的生活紧密相连、息息相关;②方程的应用是思维的进步,将使我们更容易把握问题本质,解决问题更简单易行.因此,本课选择学生熟悉的销售中的盈亏为切入点,首先使学生体会到方程与实际生活的密切性,再通过例题使学生体会到方程的优越性,在情感上让学生接受方程,情感上的接受与认同是学好知识的首要条件;

二、本章两大重点内容是①解方程,②列方程,由于解方程在前面的教学内容中作为重点已经讲授过,因此不再作为本节课的重点内容,例题中涉及到的一元一次方程都是较简单的方程,以便把本课重点、难点落实在找等量关系,根据等量关系列方程上,避免重点分散,影响教学质量;

三、方程思想是重要的数学思想,同时,解方程中又蕴含着“化归思想”,在解方程的过程中,实施各种解方程步骤的目的是使方程最终变形为x=a的形式,使“未知”逐步转化为已知,对于思想方法的教授,要渗透到日常的教学中;

四、本节课要解决的两大问题:①为什么要列方程;②对于销售问题,如何列方程;

五、课上提倡分层教学,努力做到能力强的学生多思考、多实践解决更多问题,能力差的学生能记住结论,学有所得;

一、教学目标(一)、知识与技能

(1)、了解利润,利润率的联系与区别,能利用利润或利润率建立方程;理清进价、售价之间的区别与联系;能利用商品销售中的重要等量关系:售价=进价+利润 =进价+进价×利润率列方程;(2)、能将实际问题转化为数学问题进行求解;(二)、过程与方法

(1)、通过实际问题引发学生的兴趣,感受到方程与日常生活的紧密联系,激发学生探究问题的热情;

(2)、学生经历猜想、探究、思考、归纳等过程,体会数学知识在生活中的应用;

(三)、情感态度与价值观

学生经历猜想、探究、思考、归纳等数学活动,感受数学活动的探索性和创造性,激发学生的探究热情;

三、教学重、难点

教学重点:利用利润率、进价、售价间的关系正确建立方程; 教学难点:在探究过程中正确建立方程;

四、教法与学法

教学方法:针对学生的情况和教学目标,本节课主要采用探究式的教学方法,给学生思考的空间和探索的机会,通过多种形式探究,解决销售中的盈亏问题,体现方程思想在实际中的运用;

教学手段:采用多媒体辅助教学,加大课堂教学容量,通过对例题的题型训练,由浅入深,逐步解决问题,体现用数学知识解决实际问题的一般过程.同时对例题做几种变式训练,通过比较,反思为什么会有不同的结果,深化对销售中的盈亏问题的理解;

五、教学过程

(一)课前准备:

你能根据自己的理解说出它们的意思吗? 进价: 售价: 标价: 打折: 利润: 利润率:

(二)分析归纳并记忆 售价=标价×

利润=售价- 售价= 利润率= 售价=

盈利:售价______进价

利润=售价-进价_________0 亏损:售价______进价

利润=售价-进价_________0

(二)课上基础训练:

1、水果市场苹果3元/斤,批发价2.2元/斤,每斤赚3-2.2=0.8元 在等式3-2.2=0.8中,3是,2.2是,0.8是 ;

2、秋天来了,夏装打折销售,某衣服原价200元,现打5折销售,现价为 ;

3、一件商品进价为100元,现将提高50%销售,则售价为 ;

4、一件商品进价是50元,售价是100元,则商家卖这件商品的利润为元,利润率是________;

【设计说明】:基本知识与概念,是学好本课的关键,有必要让学生明确掌握.(三)合作探究,解决问题 活动1 销售中的盈亏

例:某商店在某一时间内以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%。卖这两件衣服总的是盈利还是亏损,还是不盈不亏? 1.概念链接:盈利就是售价 进价,即利润 0;

亏损就是售价 进价,即利润 0;

2.大胆猜想你认为是亏还是盈?还是不亏不盈?简单陈述你的理由:

3.验证猜想:盈利25%的售价为60元,设进价为,等量关系为,可列方程为,解得进价为.仿照上面,求解亏损25%的商品的进价: 4.得出结果:你现在能判断盈亏吗? 5.总结判断盈亏的方法

思考一:若将问题变为“将进价为60元的两件衣服售出,其中一件盈利25%,另一件亏损25%”,则卖这两件衣服总的盈亏情况如何? 思考二:两种情况产生了不同的结果,原因是什么?

【设计说明】:通过问题条件的变化,进一步体会方程的应用,并逐步理解利润率是以进价为基础,而不是以售价为基础,为完全掌握销售中的盈亏问题做准备;

(四)变式练习,应用新知 活动2 练习新知

(1)、一玩具以22元售出,结果获利10%,求原价(2)、一钢笔以20元售出,结果亏损10%,求原价

(3)、某服装店同时卖出两套服装,每套均卖168元,其中一套盈利20%,另一套亏本20%,问这次出售服装,该店是赚钱还是赔钱?

【设计说明】:在练习中先给出在一次销售中已知售价和利润率,求进价的问题,将原例题难度降低,同时将解决问题的思路清晰化,让学生逐步能运用上述关系解决常见问题

(五)、回顾反思,升华提高 活动3 拓展思考

(1)、在销售过程中以相同的价格卖出两件商品,且两件商品盈利的利润率和亏损的亏损率相等,可以判断两次销售总的盈亏情况吗?

(2)、服装店同时卖出两套服装,每套均卖120元,其中一套亏本20%,问另一套盈利百分之几,才能使这次出售服装没有盈利也没有亏损?

【设计说明】:在第一个问题中,不给出具体数字,让学生无法进行计算,只能思考,探究问题的本质。在第二个问题中,不按前面的思路求盈亏情况,转而求盈利率。让学生进一步体会此类问题的关键所在,从而真正体会和掌握解决问题的本质方法.(六)、归纳总结,形成能力 活动4 课堂小结

(1)、利润和利润率是不同的两个量,利润是售价与进价的差,利润率是利润与进价的百分比;

一元一次不等式组的应用 篇7

一、确定数量

例1 (2012·福建福州) 某次知识竞赛共有20道题,每一题答对得5分,答错或不答都扣3分。

(1) 小明考了68分,那么小明答对了多少道题?

(2) 小亮获得二等奖 (70分~90分) ,请你算算小亮答对了几道题?

解析:对于 (1) ,设小明答对了x道题,则可列出一元一次方程进行求解;对于 (2) ,由于小亮得分在70分~90分之间,如果设其答对了y道题,那么他最少得70分,最多得90分,因此可列出不等式组进行求解。

答案:解: (1) 设小明答对了x道题,依题意得:

解得:x=16。

答:小明答对了16道题: (2) 解:设小亮答对了y道题,依题意得。

解得:

∵y是正整数,

答:小亮答对了17道题或18道题。

点评:本题通过两个问题,考查同学们列方程 (组) 、不等式组解决实际问题的能力,体现数学问题源自现实生活,而又为更好地解决现实问题的辩证规律。

二、制定运输方案

例2 (2012·浙江温州) 温州享有“中国笔都”之称,其产品畅销全球,某制笔企业欲将n件产品运往A、B、C三地销售,要求运往C地的件数是运往A地件数的2倍,各地的运费如右图所示。设安排x件产品运往A地。

(1) 当n=200时, (1) 根据信息填表:

(2) 若运往B地的件数不多于运往C地的件数,总运费不超过4000元,则有哪几种运输方案?

(2) 若总运费为5800元,求n的最小值。

分析:数量关系: (1) 运往C地的件数是运往A地件数的2倍;件数和为200; (2) 运往B地的件数不多于运往C地的件数; (3) 总运费不超过4000元。

解: (1) (1) 根据信息填表:

(2) 由题意得:

解得:

∵x为整数,∴x=40或41或42。

∴有三种方案,分别为:

(i) A地40件,B地80件,C地80件;

(ii) A地41件,B地77件,C地82件;

(iii) A地42件,B地74件,C地84件.

(2) 由题意得:30x+8 (n-3x) +50x=5800,

整理得:n=725-7x。

又∵x≥0,∴0≤x≤72.5且x为整数。

∵n随x的增大而减少,

∴当x=72时,n有最小值为221。

点评:列不等式组解实际问题与列方程组解实际问题的方法、步骤类似,关键是要认真审题,仔细分析数量之间的关系,运用数学思维方式抓住表示不等的关键词句,如:“超过”、“多于”、“不足”、“至少”、“大于”、“不超过”、“不小于”等列出不等式组。

三、确定用电量量

例3 (2012·贵州贵阳) 贵阳市公布的居民用电阶梯电价收费标准如下:

例:若某户月用电量400度,则需缴电费为:

210×0.52+ (350-210) × (0.52+0.05) + (400-350) × (0.52+0.30) =230 (元) 。

(1) 如果按此方案计算,小华家5月份的电费为138.84元,请你求出小华家5月份的用电量;

(2) 依此方案请你回答:若小华家某月的电费为a元,则小华家该月用电量属于第几挡?

分析: (1) 计算出第二档最低用电量的费用进行比较即可; (2) 分别计算出第一档最低用电费和第二档最低电费对a值进行讨论.

解: (1) 因为属于第二档最低用电量的费用为:

210×0.52+ (350-210) × (0.52+0.05) =189 (元) >138.84元,

所以小华家5月份的用电量属于第二档。

设小华家5月份的用电量为x度,由题意,得:210×0.52+ (x-210) × (0.52+0.05) =138.84。

解得:x=262。

答:小华家5月份的用电量262度。

(2) 对于a的取值,应分三类讨论:

(1) 当0

(2) 当109.2

(3) 当a>189时,小华家用电量属于第三档.

点评:本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解。

四、选择优惠项目

例4 (2012·贵州黔东南) 我州某教育行政部门计划今年暑假组织部分教师到外地进行学习,预订宾馆住宿时,有住宿条件一样的甲、乙两家宾馆供选择,其收费标准均为每人每天120元,并且各自推出不同的优惠方案。甲家是35人 (含35人) 以内的按标准收费,超过35人的,超出部分按九折收费;乙家是45人 (含45人) 以内的按标准收费,超过45人的,超出部分按八折收费。如果你是这个部门的负责人,你应选哪家宾馆更实惠些?

解析:设教师人数为x。

则甲宾馆收费为:

则乙宾馆收费为:

(1) 当0

(2) 当35

35×120+120 (x-35) ×90%<120x一定成立,

甲宾馆更优惠。

(3) 当x>45时,

即45

甲宾馆更优惠。

(4) 当x>45时,

即x=55 (人) 时,两家宾馆一样优惠。

(5) 当x>45时,

即x>55,乙宾馆更优惠;

答:总之,当x≤35或x=55时,选择两个宾馆是一样的;当3555时,选乙宾馆比较便宜。

谈用一元一次方程解应用题 篇8

一、使学生顺利审题列方程

列方程解应用题的一般步骤为:

(1)弄清题意,找出已知条件和所述问题;

(2)根据题意确定等量关系,设未知数x;

(3)根据等量关系列出方程;

(4)检验。写出答案。

其中找“等量关系”是列方程解应用题的关键。我在教学中对每道例题都坚持让学生正确叙述其中的“等量关系”。这样做,我认为有以下几点好处:①有利于学生理解题意,找出“等量关系”。学生列方程有时感到困难,原因之一就在于对题意的理解还不透彻,忙于列方程,结果常常出错。②有助于学生考虑问题的思路规范化。通过教学要使学生明确:解题之前,首先要在理解题意的基础上,找出其中的“等量关系”,然后列方程。这样就不会处于一种审题怕方程列不出来,而茫然不知所措的状态。③有助于显现未知数的设法。“等量关系”就是用语言或文字列出方程。因此,在所列的“等量关系”中,哪些量是已知的,哪些量需要设成未知数,便明显可见。④有助于减少学生列方程的困难。从审题到列方程,对于理解能力较弱或数学基础较差的学生来说,这一步的距离是比较长的,而“等量关系”是从应用题的事实到把内部联系以方程为桥梁,用这样的—个桥梁来过渡,再把“等量关系”翻译”成方程。

例如:甲、乙骑自行车同时从相距65千米的两地相向而行,2小时相遇。甲比乙每小时多骑2.5千米,求甲乙的时速各是多少?

分析:本題中的等量关系有:甲的时速=乙的时速+2.5千米肘,甲走的路程+乙走的路程=65千米。

未知:甲乙的时速。

通过分析我们可以设乙的时速为x千米,时,则甲的时速为(x+2.5)千米,日寸,其中的等量关系为“甲走的路程+乙走的路程=65千米”。

由分析可列方程为2(x+2.5)+2x=65,解x求出甲乙的时速。

二、明确正确列方程的三条标准

为了使学生能够正确列出方程,并具有检验自己所列方程是否正确的能力,我结合例题讲解了正确列方程的三条标准:①两边的意义相同。②两边的单位一致。③两边的数量相等。也就是说,左边的代数式的意义若表示路程,右边的代数式的意义也必须表.示路程,左边若以“千米”为路程单位,右边也必须以“千米”为路程单位,左边总共代表的是10千米,右边总共代表的也必须是10千米。因为,方程两边所代表的意义是通过代数式表达出来的,若不认真加以推敲,就容易犯两边意义不同、单位不统一的错误。如,有含盐8%的盐水40千克,要配制成含盐20%的盐水,需要加盐多少克?学生很容易设成加入x克盐,错列为40×8%+x=20%(40+x)。由于单位不统一,数量不相等,这就破坏了“等量关系”,也歪曲了原题的意思。所以是错误的。实践表明,明确提出列方程的三条标准对于提高学生列方程的能力有一定的积极作用。

三、为熟练列方程做好准备-

在讲每一类型的应用题之前,都把基本关系式或解题要点加工整理,明确列出。—方面强调记忆,—方面配备列代数的例题及练习,使学生熟练地运用基本关系式列出代数式,向列方程靠近。如,在行程问题中,基本关系式可列为:①路程=速度×时间;②甲、乙相向运动的速度=甲的速度+乙的速度;③追赶的速度=迫者的速度—被迫者的速度;④顺水的速度=静水速度+水流速度;⑤逆水速度=静水速度-水流速度。

工程问题的解题要点为:①把全工程看成“整体1”;②如果某人独做某工程要a天完成,那么他的工作效率就是每天做全部工作的1/a,基本单位式为:工作效率×工作时间=工作量。

浓度配比问题的基本关系式为:①浓度=溶质质量,溶液重量×100%;②溶液重量=质重量+剂重量。

列方程解应用题虽是—个难点问题,但只要透彻理解题意,正确列出“等量关系”,列方程解应用题就不会困难了。

一元一次方程应用题公式 篇9

知能点1:市场经济、打折销售问题

(1)售价、进价、利润的关系式: 商品利润= 商品售价—商品进价(2)进价、利润、利润率的关系:

利润率=(商品利润/商品进价)×100%(3)标价、折扣数、商品售价关系 : 商品售价=标价×(折扣数/10)

(4)商品售价、进价、利润率的关系: 商品售价=商品进价×(1+利润率)(5)商品总销售额=商品销售价×商品销售量

(6)商品总的销售利润=(销售价-成本价)×销售量

知能点2;储蓄、储蓄利息问题

(1)顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率。利息的20%付利息税(2)利息=本金×利率×期数 本息和=本金+利息

利息税=利息×税率(20%)

(3)商品利润率=(商品利润/商品进价)×100% 知能点3:工程问题

工作量=工作效率×工作时间

工作效率=工作量÷工作时间 工作时间=工作量÷工作效率 完成某项任务的各工作量的和=总工作量=1 合做的效率=各单独做的效率的和。

当工作总量未给出具体数量时,常设总工作量为“1”

知能点4:若干应用问题等量关系的规律

(1)和、差、倍、分问题 此类题既可有示运算关系,又可表示相等关系,要结合题意特别注意题目中的关键词语的含义,如相等、和差、几倍、几分之几、多、少、快、慢等,它们能指导我们正确地列出代数式或方程式。

增长量=原有量×增长率 现在量=原有量+增长量(2)等积变形问题

常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变. ①圆柱体的体积公式 V=底面积×高=S·h=r2h ②长方体的体积 V=长×宽×高=ab(形状面积变了,周长没变;原料体积=成品体积)

知能点5:行程问题

掌握行程中的基本关系:路程=速度×时间。

相遇问题(相向而行),这类问题的相等关系是:各人走路之和等于总路程或同时走时两人所走的时间相等为等量关系。甲走的路程+乙走的路程=全路程 追及问题(同向而行),这类问题的等量关系是:

(1)同时不同地:甲的时间=乙的时间

甲走的路程-乙走的路程=原来甲、乙相距的路程

(2)同地不同时;甲的时间=乙的时间-时间差 甲的路程=乙的路程 环形跑道上的相遇和追及问题:同时同地反向行的等量关系是两人走的路程和等于一圈的路程;同时同地同向行的等量关系是两人所走的路程差等于一圈的路程。

船(飞机)航行问题:相对运动的合速度关系是:

顺水(风)速度=静水(无风)中速度+水(风)流速度; 逆水(风)速度=静水(无风)中速度-水(风)流速度。

车上(离)桥问题:

① 上桥指车头接触桥到车尾接触桥的一段过程,所走路程为一个车长。② 离桥指车头离开桥到车尾离开桥的一段路程。所走的路程为一个成长 ③车过桥指车头接触桥到车尾离开桥的一段路程,所走路成为一个车长+桥长 ④车在桥上指车尾接触桥到车头离开桥的一段路程,所行路成为桥长-车长

行程问题可以采用画示意图的辅助手段来帮助理解题意,并注意两者运动 出发的时间和地点。抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系

知能点6:数字问题

(1)要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1≤a≤9,0≤b≤9,0≤c≤9)则这个三位数表示为:100a+10b+c。然后抓住数字间或新数、原数之间的关系找等量关系列方程.

(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n—2表示;奇数用2n+1或2n—1表示 年龄问题其基本数量关系: 大小两个年龄差不会变。

这类问题主要寻找的等量关系是:抓住年龄增长,一年一岁,人人平等。

知能点7:比例分配问题

全部数量=各种成分的数量之和

一元一次方程应用题及答案 篇10

设慢车开出a小时后与快车相遇 50a+75(a-1)=275 50a+75a-75=275 125a=350 a=2.8小时

2.一辆汽车以每小时40km的速度由甲地开往乙地,车行3h后,因遇雨,平均速度被迫每小时减少10km,结果到乙地比预计的时间晚了45min,求甲 乙两地距离。

设原定时间为a小时 45分钟=3/4小时 根据题意

40a=40×3+(40-10)×(a-3+3/4)40a=120+30a-67.5 10a=52.5 a=5.25=5又1/4小时=21/4小时 所以甲乙距离40×21/4=210千米

3、某车间的钳工班,分两队参见植树劳动,甲队人数是乙队人数的 2倍,从甲队调16人到乙队,则甲队剩下的人数比乙队的人数的 一半少3人,求甲乙两队原来的人数?

解:设乙队原来有a人,甲队有2a人 那么根据题意

2a-16=1/2×(a+16)-3 4a-32=a+16-6 3a=42 a=14 那么乙队原来有14人,甲队原来有14×2=28人 现在乙队有14+16=30人,甲队有28-16=12人

4、已知某商店3月份的利润为10万元,5月份的利润为13.2万元,5月份月增长率比4月份增加了10个百分点.求3月份 的月增长率。解:设四月份的利润为x 则x*(1+10%)=13.2 所以x=12

设3月份的增长率为y 则10*(1+y)=x y=0.2=20%

所以3月份的增长率为20%

5、某校为寄宿学生安排宿舍,如果每间宿舍住7人,呢么有6人无法安排。如果每间宿舍住8人,那么有一间只住了4人,且还空着5见宿舍。求有多少人? 解:设有a间,总人数7a+6人 7a+6=8(a-5-1)+4 7a+6=8a-44 a=50 有人=7×50+6=356人

6、一千克的花生可以炸0.56千克花生油,那么280千克可以炸几多花生油? 按比例解决

设可以炸a千克花生油 1:0.56=280:a a=280×0.56=156.8千克

完整算式:280÷1×0.56=156.8千克

7、一批书本分给一班每人10本,分给二班每人15本,现均分给两个班,每人几本?

解:设总的书有a本 一班人数=a/10 二班人数=a/15 那么均分给2班,每人a/(a/10+a/15)=10×15/(10+15)=150/25=6本

8、六一中队的植树小队去植树,如果每人植树5棵,还剩下14棵树苗,如果每人植树7棵,就少6棵树苗。这个小队有多少人?一共有多少棵树苗?

解:设有a人 5a+14=7a-6 2a=20 a=10 一共有10人

有树苗5×10+14=64棵

9、一桶油连油带筒重50kg,第一次倒出豆油的的一半少四千克,第二次倒出余下的四分之三多二又三分之二kg,这时连油带桶共重三分之一kg,原来桶中有多少油?

解:设油重a千克 那么桶重50-a千克

第一次倒出1/2a-4千克,还剩下1/2a+4千克

第二次倒出3/4×(1/2a+4)+8/3=3/8a+17/3千克,还剩下1/2a+4-3/8a-17/3=1/8a-5/3千克油 根据题意

1/8a-5/3+50-a=1/3 48=7/8a a=384/7千克 原来有油384/7千克

10、用一捆96米的布为六年级某个班的学生做衣服,做15套用了33米布,照这样计算,这些布为哪个班做校服最合适?(1班42人,2班43人,3班45人)

设96米为a个人做 根据题意 96:a=33:15 33a=96×15 a≈43.6 所以为2班做合适,有富余,但是富余不多,为3班做就不够了

11、一个分数,如果分子加上123,分母减去163,那么新分数约分后是3/4;如果分子加上73,分母加上37,那么新分数约分后是1/2,求原分数。解:设原分数分子加上123,分母减去163后为3a/4a 根据题意

(3a-123+73)/(4a+163+37)=1/2 6a-100=4a+200 2a=300 a=150 那么原分数=(3×150-123)/(4×150+163)=327/763

12、水果店运进一批水果,第一天卖了60千克,正好是第二天卖的三分之二,两天共卖全部水果的四分之一,这批水果原有多少千克(用方程解)

设水果原来有a千克 60+60/(2/3)=1/4a 60+90=1/4a 1/4a=150 a=600千克

水果原来有600千克

13、仓库有一批货物,运出五分之三后,这时仓库里又运进20吨,此时的货物正好是原来的二分之一,仓库原来有多少吨?(用方程解)设原来有a吨

a×(1-3/5)+20=1/2a 0.4a+20=0.5a 0.1a=20 a=200 原来有200吨

14、王大叔用48米长的篱笆靠墙围一块长方形菜地。这个长方形的长和宽的比是5:2。这块菜地的面积是多少? 解:设长可宽分别为5a米,2a米 根据题意

5a+2a×2=48(此时用墙作为宽)9a=48 a=16/3 长=80/3米 宽=32/3米

面积=80/3×16/3=1280/9平方米 或

5a×2+2a=48 12a=48 a=4 长=20米 宽=8米

面积=20×8=160平方米

15、某市移动电话有以下两种计费方法:

第一种:每月付22元月租费,然后美分钟收取通话费0.2元。第二种:不收月租费 每分钟收取通话费0.4元。

如果每月通话80分钟 哪种计费方式便宜?如果每月通话300分钟,又是哪种计费方式便宜呢?? 设每月通话a分钟 当两种收费相同时 22+0.2a=0.4a 0.2a=22 a=110 所以就是说当通话110分钟时二者收费一样

通话80分钟时,用第二种22+0.2×80=38>0.4×80=32 通过300分钟时,用第一种22+0.2×300=82<0.4×300=120

16、某家具厂有60名工人,加工某种由一个桌面和四条桌腿的桌子,工人每天美人可以加工3个桌面或6个桌腿。怎么分配加工桌面和桌腿的人数,才能使每天生产的桌面和桌腿配套?

设a个工人加工桌面,则加工桌腿的工人有你60-a人 3a=(60-a)×6/4 12a=360-6a 18a=360 a=20 20人加工桌面,60-20=40人加工桌腿

17、一架飞机在2个城市之间飞行,风速为每时24km,顺风飞行要17/6时,逆风飞要3时,求两城市距离

设距离为a千米 a/(17/6)-24=a/3+24 6a/17-a/3=48 a=2448千米

18、A.B两地相距12千米,甲从A地到B地停留30分钟后,又从B地返回A地。乙从B地到A地,在A地停留40分钟后,又从A地返回B地。已知两人同时分别从A B两地出发,经过4小时。在他们各自的返回路上相遇,如甲的速度比乙的速度每小时快1.5千米,求两人速度?

设乙的速度为a千米/小时,则甲的速度为a+1.5千米/小时 30分钟=1/2小时,40分钟=2/3小时(4-2/3)a+(a+1.5)×(4-1/2)=12×3 10/3a+7/2a+21/4=36 41/6a=123/4 a=4.5千米/小时

甲的速度为4.5+1.5=6千米/小时

19、甲乙两人分别从相距7千米的AB两地出发同向前往C地,凌晨6点乙徒步从B地出发,甲骑自行车在早晨6点15分从A地出发追赶乙,速度是乙的1.5倍,在上午8时45分追上乙,求甲骑自行车的速度是多少。解:设乙的速度为a千米/小时,甲的速度为1.5a千米/小时 15分=1/4小时,6点15分到8点45分是5/2小时 距离差=7+1/4a 追及时间= 5/2小时(1.5a-a)×5/2=7+1/4a 5/4a=7+1/4a a=7千米/小时

甲的速度为7×1.5=10.5千米/小时

20、在一块长为40米,宽为30米的长方形空地上,修建两个底部是长方形且底部面积为198平方米的小楼房,其余部分成硬化路面,若要求这些硬化路面的宽相等,求硬化路面的宽? 设硬化路面为a米

40a×2+(30-2a)×a×3=40×30-198×2 80a+90a-6a²=804 3a²-85a+402=0(3a-67)(a-6)=0 a=67/3(舍去),a=6 所以路宽为6米 因为3a<40 a<40/3

一、某水产品市场管理部门规划建造面积为2400平方米的大棚,大棚内设A种类型和B种类型的店面共80间,每间A种类型的店面的平均面积为28平方米,月租费为400元,每间B种类型的店面的平均面积为20平方米,月租费为360元,全部店面的建造面积不低于大棚总面积的85%。

(1)试确定A种类型店面的数量?

(2)该大棚管理部门通过了解,A种类型店面的出租率为75%,B种类型店面的出租率为90%,为使店面的月租费最高,应建造A种类型的店面多少间? 解:设A种类型店面为a间,B种为80-a间 根据题意

28a+20(80-a)≥2400×85% 28a+1600-20a≥2040 8a≥440 a≥55

A型店面至少55间 设月租费为y元

y=75%a×400+90%(80-a)×360 =300a+25920-324a =25920-24a 很明显,a≥55,所以当a=55时,可以获得最大月租费为25920-24x55=24600元

二、水产养殖户李大爷准备进行大闸蟹与河虾的混合养殖,他了解到情况:

1、每亩地水面组建为500元。

2、每亩水面可在年初混合投放4公斤蟹苗和20公斤虾苗;

3、每公斤蟹苗的价格为75元,其饲养费用为525元,当年可或1400元收益;

4、每公斤虾苗的价格为15元,其饲养费用为85元,当年可获160元收益;

问题:

1、水产养殖的成本包括水面年租金,苗种费用和饲养费用,求每亩水面虾蟹混合养殖的年利润(利润=收益—成本);

2、李大爷现有资金25000元,他准备再向银行贷款不超过25000元,用于蟹虾混合养殖,已知银行贷款的年利率为10%,试问李大爷应租多少亩水面,并向银行贷款多少元,可使年利润达到36600元? 解:

1、水面年租金=500元

苗种费用=75x4+15x20=300+300=600元 饲养费=525x4+85x20=2100+1700=3800元 成本=500+600+3800=4900元

收益1400x4+160x20=5600+3200=8800元 利润(每亩的年利润)=8800-4900=3900元

2、设租a亩水面,贷款为4900a-25000元 那么收益为8800a 成本=4900a≤25000+25000 4900a≤50000

a≤50000/4900≈10.20亩

利润=3900a-(4900a-25000)×10% 3900a-(4900a-25000)×10%=36600 3900a-490a+2500=36600 3410a=34100 所以a=10亩

贷款(4900x10-25000)=49000-25000=24000元

三、某物流公司,要将300吨物资运往某地,现有A、B两种型号的车可供调用,已知A型车每辆可装20吨,B型车每辆可装15吨,在每辆车不超载的条件下,把300吨物资装运完,问:在已确定调用5辆A型车的前提下至少还需调用B型车多少辆?

解:设还需要B型车a辆,由题意得 20×5+15a≥300 15a≥200 a≥40/3

解得a≥13又1/3 .

由于a是车的数量,应为正整数,所以x的最小值为14. 答:至少需要14台B型车.

四、某城市平均每天产生生活垃圾700吨,全部由甲,乙两个垃圾厂处理,已知甲厂每小时处理垃圾55吨,需费用550元;乙厂每小时处理垃圾45吨,需费用495元。如果规定该城市处理垃圾的费用每天不超过7370元,甲厂每天至少需要处理垃圾多少小时? 解:设甲场应至少处理垃圾a小时

550a+(700-55a)÷45×495≤7370 550a+(700-55a)×11≤7370 550a+7700-605a≤7370 330≤55a a≥6

甲场应至少处理垃圾6小时

五、学校将若干间宿舍分配给七年级一班的女生住宿,已知该班女生少于35人,若每个房间住5人,则剩下5人没处可住;若每个房间住8人,则空出一间房,并且还有一间房也不满。有多少间宿舍,多少名女生?

解:设有宿舍a间,则女生人数为5a+5人 根据题意 a>0(1)0<5a+5<35(2)0<5a+5-[8(a-2)]<8(3)由(2)得-5<5a<30-1

六、某手机生产厂家根据其产品在市场上的销售情况,决定对原来以每部2000元出售的一款彩屏手机进行调价,并按新单价的八折优惠出售,结果每部手机仍可获得实际销售价的20%的利润(利润=销售价—成本价).已知该款手机每部成本价是原销售单价的60%。

(1)求调整后这款彩屏手机的新单价是每部多少元?让利后的实际销售价是每部多少元?

解:手机原来的售价=2000元/部 每部手机的成本=2000×60%=1200元 设每部手机的新单价为a元 a×80%-1200=a×80%×20% 0.8a-1200=0.16a 0.64a=1200 a=1875元

让利后的实际销售价是每部1875×80%=1500元

(2)为使今年按新单价让利销售的利润不低于20万元,今年至少应销售这款彩屏手机多少部? 20万元=200000元 设至少销售b部

利润=1500×20%=300元 根据题意 300b≥200000 b≥2000/3≈667部

至少生产这种手机667部。

七、我市某村计划建造A,B两种型号的沼气池共20个,以解决该村所有农户的燃料问题.两种型号的沼气池的占地面积,使用农户数以及造价如下表: 型号

占地面积(平方米/个)

使用农户数(户/个)

造价(万元/个)A

B

已知可供建造的沼气池占地面积不超过365平方米,该村共有492户.(1).满足条件的方法有几种?写出解答过程.(2).通过计算判断哪种建造方案最省钱?

解:(1)设建造A型沼气池 x 个,则建造B 型沼气池(20-x)个 18x+30(20-x)≥492 18x+600-30x≥492 12x≤108 x≤9

15x+20(20-x)≤365

15x+400-20x≤365 5x≥35 x≤7

解得:7≤ x ≤ 9

∵ x为整数 ∴ x = 7,8,9,∴满足条件的方案有三种.(2)设建造A型沼气池 x 个时,总费用为y万元,则: y = 2x + 3(20-x)= -x+ 60 ∵-1< 0,∴y 随x 增大而减小,当x=9 时,y的值最小,此时y= 51(万元)

∴此时方案为:建造A型沼气池9个,建造B型沼气池11个 解法②:由(1)知共有三种方案,其费用分别为:

方案一: 建造A型沼气池7个,建造B型沼气池13个,总费用为:7×2 + 13×3 = 53(万元)

方案二: 建造A型沼气池8个,建造B型沼气池12个,总费用为:8×2 + 12×3 = 52(万元)

方案三: 建造A型沼气池9个,建造B型沼气池11个,总费用为:9×2 + 11×3 = 51(万元)∴方案三最省钱.八、把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本.这些书有多少本?学生有多少个? 解:设学生有a人 根据题意

3a+8-5(a-1)<3(1)3a+8-5(a-1)>0(2)由(1)3a+8-5a+5<3 2a>10 a>5 由(2)3a+8-5a+5>0 2a<13 a<6.5 那么a的取值范围为5

九、某水产品市场管理部门规划建造面积为2400m²的集贸大棚。大棚内设A种类型和B种类型的店面共80间。每间A种类型的店面的平均面积为28m²月租费为400元;每间B种类型的店面的平均面积为20m²月租费为360元。全部店面的建造面积不低于大棚总面积的80%,又不能超过大棚总面积的85%。试确定有几种建造A,B两种类型店面的方案。解:设A种类型店面为a间,B种为80-a间 根据题意

28a+20(80-a)≥2400×80%(1)28a+20(80-a)≤2400×85%(2)由(1)

28a+1600-20a≥1920 8a≥320 a≥40 由(2)

28a+1600-20a≤2040 8a≤440 a≤55 40≤a≤55

方案:

A

B

……

一共是55-40+1=16种方案

十、某家具店出售桌子和椅子,单价分别为300元一张和60元一把,该家具店制定了两种优惠方案:(1)买一张桌子赠送两把椅子;(2)按总价的87.5%付款。某单位需购买5张桌子和若干把椅子(不少于10把)。如果已知要购买X把椅子,讨论该单位购买同样多的椅子时,选择哪一种方案更省钱? 设需要买x(x≥10)把椅子,需要花费的总前数为y 第一种方案:

y=300x5+60×(x-10)=1500+60x-600=900+60x 第二种方案:

上一篇:高三语文教学计划指导下一篇:湖南大学考研初试科目