三年级奥数之植树问题

2025-04-27 版权声明 我要投稿

三年级奥数之植树问题(精选10篇)

三年级奥数之植树问题 篇1

1,一条河堤长420米,从头到尾每隔3米栽一棵树,要栽多少棵树?

2.肖林家门口到公路边有一条小路,长40米。肖林要在小路一旁每隔2米栽一棵树,一共要栽多少棵树?

3,一个圆形水池的围台圈长60米。如果在此台圈上每隔3米放一盆花,那么一共能放多少盆花?

4,在一段路边每隔50米埋设一根路灯杆,包括这段路两端埋设的路灯杆,共埋设了10根。这段路长多少米?

5,小明要到高层建筑的11层,他走到5层用了100秒,照此速度计算,他还需走多少秒?

6.学校有一条长60米的走道,计划在道路一旁栽树。每隔3米栽一棵。

(1)如果两端都各栽一棵树,那么共需多少棵树苗?

(2)如果两端都不栽树,那么共需多少棵树苗?

(3)如果只有一端栽树,那么共需多少棵树苗?

7.一个长100米,宽20米的长方形游泳池,在离池边3米的外围圈(仍为长方形)上每隔2米种一棵树。共种了多少棵树?

8.一根90厘米长的钢条,要锯成9厘米长的小段,一共要锯几次?

9.测量人员测量一条路的长度。先立了一个标杆,然后每隔40米立一根标杆。当立杆10根时,第1根与第10根相距多少米?

10.学校举行运动会。参加入场式的仪仗队共180人,每6人一行,前后两行间隔120厘米。这个仪仗队共排了多长?

差倍问题(三年级奥数) 篇2

教学目标:通过本次课的的学习,正确运用差倍问题的有关公式,理清题意,解决实际问题。

教学重点:分清题意,会解决差倍问题的基本方法。教学难点:理清题意,正确运用相关的数量关系。

教学过程:

例1:一张桌子的价格是一把椅子的3倍,购买一张桌子比一把椅子贵60元。问桌椅各多少元?

分析:桌子的价格与椅子的价格的差是60,将椅子看成小数占1份,桌子占3份,份数差为3-1,根据数量关系:

椅子的价格:60÷(3-1)=30(元)桌子的价格:30+60=90(元)

例2:两筐重量相同的苹果,甲筐卖出7千克,乙筐卖出19千克后,甲筐剩余的苹果是乙筐的3倍,原来两筐各有苹果多少千克?

分析:两筐苹果的重量相同,故两筐卖出的数量差即是原来苹果的数量差。两筐苹果的差为19-7=12(千克),将乙筐看成1份,甲筐为3份,份数差为2.乙筐现有苹果:(19-7)÷(3-1)=6(千克)乙筐原来有:6+19=25(千克)甲筐原来有25千克。

总结:基本数量关系:小数=差÷(n-1)

大数=小数×n 或 大数=差+小数

完成测评卷。

1、一张桌子的价格是一把椅子的3倍,购买一张桌子比一把椅子贵60元。问桌椅各多少元?

2、甲桶酒是乙桶酒重量的5倍,如从甲桶中取出20千克到入乙桶,那么两桶酒重量相等。两桶酒原来各多少千克?

3、六1班有花盆的数量是六2班的3倍,如果六1班再购买20个花盆后,两班花盆数相等,两班原有花盆多少个?

差倍问题

1、一张桌子的价格是一把椅子的3倍,购买一张桌子比一把椅子贵60元。问桌椅各多少元?

2、甲桶酒是乙桶酒重量的5倍,如从甲桶中取出20千克到入乙桶,那么两桶酒重量相等。两桶酒原来各多少千克?

奥数植树问题教案(精选) 篇3

教学目标:

1.经历将实际问题抽象出植树问题模型的过程,掌握种树棵树与间隔数之间的关系。

2.会解决在不封闭线路上植树(指线路首尾不相连)问题,培养运用植树问题解决实际问题的能力。

教学重点:

理解种树棵树与间隔数之间的关系,会应用植树问题的模型解决一些相关的实际问题。教学难点:

应用植树问题灵活解决一些相关的实际问题。

一、例题1:一根木头锯成4段要付锯费1.2元,如果要锯成12段,要付锯费多少元?

二、例题分析:把一根木头平均锯成4段,需据4-1=3次,属于两端都没有点。从而可求出锯1次的费用1.2÷3=0.4元。现要锯成12段,也就是要锯12-1=11次,这样就可以求出费用。解:1.2×(4-1)×(12-1)=0.4×11 =4.4元

三、同类练习

1、这条公路全长1000米,每隔5米种一棵树(两端要种)。一共需要多少棵树苗?

解:1000÷5=200(棵)200 +1=201(棵)(两端要种:棵树=段数+1)

2、在一条长2000米的路的一侧种树,每隔10米种一棵(两端不种)。一共需要多少棵树苗?(两端不种:棵树=段数—1)

3、学校有一条长60米的走道,计划在道路旁栽树。每隔3米栽一棵。如果只有一端栽树,那么共需多少棵树苗?(一段种树:棵树=段数)

4、运动会上,在笔直的跑道的一侧插彩旗,每隔10米插一面(两端要插)。这条跑道长100米,一共要插多少面彩旗?(学生独立完成。)5.一根木头长8米,每2米锯一段。一共要锯几次?(学生独立完成。)

6、在一条路的一侧种树,每隔6米种一棵,一共种了41棵树。从第1棵树到最后一棵树的距离是多少米?

四、变式练习:

1、在一条长600米的公路两旁各栽一行树,起点和终点都栽,一共栽302棵,每相邻两棵之间的距离都相等,相邻两棵之间的距离是多少?

2、一条路每隔5米有一根电线杆,连两端的电线杆在内共20根,算一算公路有多长?

3、把30米长的一条绳子分成3段,后一段总比前一段多3米,秋各段长度。

4、小英和小明同住在一幢大楼里,小英家住在6层,每天回家要走80个台阶,小明回家要走32个台阶,小明家住在几层?

5、一座桥长116米,在桥的两侧栏杆上,分别安装了16块花纹

图案,图案的横长为2米,两头的图案离桥端都是12米,且每相邻两块图案间的间隔都相等,相邻两块图案之间应间隔多少米? 《植树问题》教案二 教学目标:

1.经历将实际问题抽象出植树问题模型的过程,掌握种树棵树与间隔数之间的关系。

2.会解决在封闭线路上植树(指线路首尾相连)问题,培养运用植树问题解决实际问题的能力。

教学重点:

理解种树棵树与间隔数之间的关系,会应用植树问题的模型解决一些相关的实际问题。教学难点:

应用植树问题灵活解决一些相关的实际问题。

一、例题

2、有一个长方形的操场,长45米,宽30米,如果沿着它的周围每隔3米栽一棵树,一共要栽多少棵树?

二、例题分析:这是在一个封闭的长方形周长上植树。首先要求出长方形的周长(45+30)×2=150米,在平均用每段3米,求出种多少棵树。解:(45+30)×2÷3 =75×2÷3 50棵

三、同类习题:

1、一个圆形的跑道400米,如果每隔10米竖一块警示牌,共需要多少块警示牌?

2、一个湖泊的周长是1800米,沿湖泊周围每隔8米栽一棵柳树,每两棵柳树中间栽一个桃树,湖泊周围栽了多少棵柳树和桃树?

3、一个圆形花圃周围长40米,沿周围每隔4米插一面红旗,每两面红旗的中间插一面黄旗,花圃周围各插了多少面红旗和黄旗?

4、一个圆形水池周围每隔2米栽一棵柳树,共栽了40棵,水池的周长是多少?

四、变式练习:

1、一个圆形喷水池,周长62.8米,在距池岸边均为3米的池内圆周上安装28根喷水管,每相邻两个喷水管的距离是多少米?

2、学校图书馆前摆了一个方阵花坛,这个花坛的最外层每边各摆放12盆花,最外层共摆了多少盆花?这个花坛一共要多少盆花?

三年级奥数之植树问题 篇4

为什么把有的问题叫归一问题?我国珠算除法中有一种方法,称为归除法.除数是几,就称几归;除数是8,就称为8归.而归一的意思,就是用除法求出单一量,这大概就是归一说法的来历吧!

归一问题有两种基本类型.一种是正归一,也称为直进归一.如:一辆汽车3小时行150千米,照这样,7小时行驶多少千米?另一种是反归一,也称为返回归一.如:修路队6小时修路180千米,照这样,修路240千米需几小时?

正、反归一问题的相同点是:一般情况下第一步先求出单一量;不同点在第二步.正归一问题是求几个单一量是多少,反归一是求包含多少个单一量。

例1一只小蜗牛6分钟爬行12分米,照这样速度1小时爬行多少米?

分析为了求出蜗牛1小时爬多少米,必须先求出1分钟爬多少分米,即蜗牛的速度,然后以这个数目为依据按要求算出结果。

解:①小蜗牛每分钟爬行多少分米?12÷6=2(分米)

②1小时爬几米?1小时=60分。

2×60=120(分米)=12(米)

答:小蜗牛1小时爬行12米。

还可以这样想:先求出题目中的两个同类量(如时间与时间)的倍数(即60分是6分的几倍),然后用1倍数(6分钟爬行12分米)乘以倍数,使问题得解。

解:1小时=60分钟

12×(60÷6)=12×10=120(分米)=12(米)

或12÷(6÷60)=12÷0.1=120(分米)=12(米)

答:小蜗牛1小时爬行12米。

例2一个粮食加工厂要磨面粉20000千克.3小时磨了6000千克.照这样计算,磨完剩下的面粉还要几小时?

方法1:

分析通过3小时磨6000千克,可以求出1小时磨粉数量.问题求磨完剩下的要几小时,所以剩下的量除以1小时磨的数量,得到问题所求。

解:(20000-6000)÷(6000÷3)=7(小时)

答:磨完剩下的面粉还要7小时。

方法2:用比例关系解。

解:设磨剩下的面粉还要x小时。

6000x=3×14000

x=7(小时)

答:磨完剩下的面粉还要7小时。

例3学校买来一些足球和篮球.已知买3个足球和5个篮球共花了281元;买3个足球和7个篮球共花了355元.现在要买5个足球、4个篮球共花多少元?

分析要求5个足球和4个篮球共花多少元,关键在于先求出每个足球和每个篮球各多少元.根据已知条件分析出第一次和第二次买的足球个数相等,而篮球相差7-5=2(个),总价差355-281=74(元).74元正好是两个篮球的价钱,从而可以求出一个篮球的价钱,一个足球的价钱也可以随之求出,使问题得解。

解:①一个篮球的价钱:(355-281)÷(7-5)

=37元

②一个足球的价钱:(281-37×5)÷3=32(元)

③共花多少元?32×5+37×4=308(元)

答:买5个足球,4个篮球共花308元。

例4一个长方体的水槽可容水480吨.水槽装有一个进水管和一个排水管.单开进水管8小时可以把空池注满;单开排水管6小时可把满池水排空.两管齐开需多少小时把满池水排空?

分析要求两管齐开需要多少小时把满池水排光,关键在于先求出进水速度和排水速度.当两管齐开时要把满池水排空,排水速度必须大于进水速度,即单位时间内排出的水等于进水与排水速度差.解决了这个问题,又知道总水量,就可以求出排空满池水所需时间。

解:①进水速度:480÷8=60(吨/小时)

②排水速度:480÷6=80(吨/小时)

③排空全池水所需的时间:480÷(80-60)=24(小时)

列综合算式:

480÷(480÷6-480÷8)=24(小时)

答:两管齐开需24小时把满池水排空。

例57辆“黄河牌”卡车6趟运走336吨沙土.现有沙土560吨,要求5趟运完,求需要增加同样的卡车多少辆?

方法1:

分析要想求增加同样卡车多少辆,先要求出一共需要卡车多少辆;要求5趟运完560吨沙土,每趟需多少辆卡车,应该知道一辆卡车一次能运多少吨沙土。

解:①一辆卡车一次能运多少吨沙土?

336÷6÷7=56÷7=8(吨)

②560吨沙土,5趟运完,每趟必须运走几吨?

560÷5=112(吨)

③需要增加同样的卡车多少辆?

112÷8-7=7(辆)

列综合算式:

560÷5÷(336÷6÷7)-7=7(辆)

答:需增加同样的卡车7辆。

方法2:

在求一辆卡车一次能运沙土的吨数时,可以列出两种不同情况的算式:①336÷6÷7,②336÷7÷6.算式①先除以6,先求出7辆卡车1次运的吨数,再除以7求出每辆卡车的载重量;算式②,先除以7,求出一辆卡车6次运的吨数,再除以6,求出每辆卡车的载重量。

在求560吨沙土5次运完需要多少辆卡车时,有以下几种不同的计算方法:

求出一共用车14辆后,再求增加的辆数就容易了。

例6某车间要加工一批零件,原计划由18人,每天工作8小时,7.5天完成任务.由于缩短工期,要求4天完成任务,可是又要增加6人.求每天加班工作几小时?

分析我们把1个工人工作1小时,作为1个工时.根据已知条件,加工这批零件,原计划需要多少“工时”呢?求出“工时”数,使我们知道了工作总量.有了工作总量,以它为标准,不管人数增加或减少,工期延长或缩短,仍然按照原来的工作效率,只要能够达到加工零件所需“工时”总数,再求出要加班的工时数,问题就解决了。

解:①原计划加工这批零件需要的“工时”:

8×18×7.5=1080(工时)

②增加6人后每天工作几小时?

1080÷(18+6)÷4=11.25(小时)

③每天加班工作几小时?11.25-8=3.25(小时)

答:每天要加班工作3.25小时。

例7甲、乙两个打字员4小时共打字3600个.现在二人同时工作,在相同时间内,甲打字2450个,乙打字2050个.求甲、乙二人每小时各打字多少个?

分析已知条件告诉我们:“在相同时间内甲打字2450个,乙打字2050个.”既然知道了“时间相同”,问题就容易解决了.题目里还告诉我们:“甲、乙二人4小时共打字3600个.”这样可以先求出“甲乙二人每小时打字个数之和”,就可求出所用时间了.解:①甲、乙二人每小时共打字多少个?

3600÷4=900(个)

②“相同时间”是几小时?

(2450+2050)÷900=5(小时)

③甲打字员每小时打字的个数:

2450÷5=490(个)

④乙打字员每小时打字的个数:

2050÷5=410(个)

答:甲打字员每小时打字490个,乙打字员每小时打字410个。

还可以这样想:这道题的已知条件可以分两层.第一层,甲乙二人4小时共打字3600个;第二层,在相同时间内甲打字2450个,乙打字2050个.由这两个条件可以求出在相同的时间内,甲乙二人共打字2450+2050=4500(个);打字3600个用4小时,打字4500个用几小时呢?先求出4500是3600的几倍,也一定是4小时的几倍,即“相同时间”。

解:①“相同时间”是几小时?

4×[(2450+2050)÷3600]=5(小时)

②甲每小时打字多少个?

2450÷5=490(个)

③乙每小时打字多少个?

2050÷5=410(个)

三年级植树问题教案 篇5

分组画出不同路长的栽法,小组展示栽的棵数。师“为什么这么画?”

(3)总结规律

小组内填写表格,观察:“你发现了什么规律?”“刚才通过画图知道了棵数,能不能通过计算得到呢?”

师:“根据刚才发现的规律你知道例1的答案了吗?会列式计算吗?”(出示课件11)

4、运用规律

(1)现在我们的小手的5个手指看成5棵树,你能说说今天发现的规律吗?同桌相互说一说。

(2)出示课件12“比一比谁的反应快” 在两端都栽的情况下,有8个间隔共要种几棵树?有10个间隔共要种几棵树?如果已种了6棵树有几个间隔?如果已种了10棵树有几个间隔?

三、巩固应用,内化提高

师:在日常生活中,在我们周围有许多类似于植树问题的现象小明就在不同的地方找到了,咱们来看看吧。

1、公共汽车上(出示课件13)

2、公路上(出示课件14)

3、上楼梯(出示课件15)

4、钟表上(出示课件16)

引导:师边模仿钟响边板书,学生击掌感受第一响与第二响之间有间隔。

四、回顾整理,反思提升

三年级奥数教学方案 篇6

选用教材:《举一反三(AB版)》 选用本教材的理由:

①畅销十年,获得各界良好的口碑;

②本书推崇融会贯通、触类旁通的学习方法; ③训练学生多角度思考问题的能力;

④各类专题难度梯度层次分明,使学生更容易接触,并以阶梯式深入;

⑤本书内容贴近学生日常生活,把对奥数的学习与真实生活情景相结合,使其融汇一体; ⑥新增近年来的热点题型,满足不同学习程度的学生的要求。课程安排说明:根据实际教学情况和考虑到学生们的学习能力,教师的教学不会完全按照书本目录的顺序进行,而是会进行微调,调整原则为“合并同类项”和难易相当,目的是使教学内容更加紧凑有律、有序可循,同时学生也会更容易进入教学过程中来。整个教学过程主要是由教师带领学生有计划、有规律地学习,抓住每章重点,找出章与章之间的联系,从而形成一个由点、线、面形成的知识体系。此外,在教授学生学习和解题技巧的过程中,不断开发和提升其思维与学习能力,使学生在今后能自主学习、思考,并且举一反三!关于本书中涉及到的已学知识,在本次教学中会作为旧知识点加以复习巩固。

教学步骤:书本知识(扩充必要的课外知识)+随堂练习+知识考核(主要以B版题目为主)具体教学安排:

1、数数图形 使学生有次序、有条理、有规律地弄清图形(线段、角、三角形)中包含的基本图形是什么,有多少个,然后再数出由基本图形组成的新图形,最后求出它们的总和。

2、寻找规律

使学生找到以一定的顺序排列的一列数中的排列规律。介绍该内容找规律的方法:不仅可以从相邻两数的和、差考虑,还能从积和商考虑。

3、填数游戏

此类趣味题的解题方法是:确定图形中关键位置应填几,一般是顶点或中间位置,同时把所填空与所给数字联系起来。

4、巧添符号

对于这类问题,介绍学生两种主要的解题方法:一是倒推法;一是凑数法。

5、周期问题

介绍此类问题的解决方法是利用余数的知识:先审题,后找出不断重复出现的规律,然后利用除法求出余数,最后根据余数求出正确结果。

6、植树(间隔)问题

间隔问题在这里以植树问题为主要讲解的例子。使学生掌握三个基本植树问题的公式:①棵树=段数+1;②棵树=段数-1;③棵树=段数

7、数学趣题

使学生充分读懂题意,并且进行分析思考,运用基础知识和聪明才智解决问题。

8、数字趣谈

该部分内容大都是关于自然数列方面的计数问题,其方法一般采用尝试探索法和分类统计法。

9、简单枚举

强调用枚举法解题时,要注意无重复、无遗漏,即有次序、有规律地进行枚举。

10、算式之谜

介绍此类解题方法是推理加尝试:把握已知数字与所缺数字之间的关系,然后进行先观察,后推理,再尝试等步骤。

11、文字之谜

让学生了解文字算式谜与添加运算符号、填竖式的步骤与方法基本上是一样的。

12、加减巧算

主要介绍巧算方法为“凑整法”。

13、有余除法

介绍此类解题关键是先确定余数,然后确定除数,最后根据被除数、除数、商和余数之间的关系求被除数。记住两个重要公式:①余数必须小于除数;②被除数=商×除数+余数

14、乘法速算

介绍多位数与一些特殊的数相乘的简便计算方法。特别介绍两种特殊方法:一是先拆数再扩整;一是两头一拉,中间相加。

14、乘除巧算

使学生牢记一些特殊计算结果,同时掌握乘法交换律、乘法结合律和乘法分配律等,让学生善于运用运算定律,提高计算能力。

16、和差问题

介绍此类问题的解决方法主要是假设法,同时结合线段图进行分析。此外,掌握数量关系式:①(和+差)÷2=大数;②(和—差)÷2=小数

17、和倍问题

介绍解决此类问题的关键是找出两数的和以及与其对应的倍数和,从而求出1倍数,再求出几倍数。掌握几个数量关系表达式:①两数和÷(倍数+1)=小数(1倍数); ②小数×倍数=大数(几倍数);③两数和—小数=大数

18、差倍问题(一、二)

使学生找出解决差倍问题与和倍问题的类似方法,充分利用线段图帮助分析。掌握几个数量关系式:①两数差÷(倍数—1)=小数(1倍数);②较小的数×倍数=大数(几倍数)

19、年龄问题

该类型的题目是和差及差倍问题的综合。解决该问题要让学生知道:两个不同年龄的人的年龄差始终不变,但两人年龄的倍数关系却在不断变化。故,使学生抓住“差不变”的特点,利用和差和差倍等知识解决此类问题。20、解决问题

(一)使学生在分析应用题的数量关系时,从条件出发,或者从问题出发找到必需的条件。在解答时,根据题目中的数量关系灵活运用以上两种方式。

21、平均数问题(一、二)

使学生了解平均数即“移多补少”,使其掌握公式:总数量÷总分数=平均数

22、解决问题

(二)在该部分内容中,涉及到了平均的概念,所以要让学生了解平均概念的同时,分析题目,掌握数量关系,判断条件和条件、条件和问题之间的关系。

23、错中求解

介绍此类问题的解决办法要采用倒推的方法,从错误的结果入手,并利用和差的变化求出加数或被减数、减数,利用积、商的变化求出因数或被除数、除数。

24、还原问题

介绍此类问题的方法一般采用倒推法,同时可以利用线段图、表格来帮助理解题意。

25、对应解题

介绍解决此类问题的方法:通常先把题目中的数量关系转化为等式,并按顺序编号,观察、比较对应关系的变化。

26、等量代换

介绍等量代换的基本方法:根据已知条件和未知条件之间的关系,用一个未知数量代替另一个未知数量,从而找出解决方法。

27、简单推理(一、二)

在简单推理

(一)中,使学生认真分析等式中几个图形之间的关系,再利用等量代换及消去法等方法进行解答;在简单推理

(二)中,解决问题的方法为:先假设一个结论正确,然后验证它是否符合所给条件,若没有矛盾,则证明推理正确,否则再换一个结论来验证。

28、假设解题

让学生了解解决此类题型的方法是:依照已知条件进行推算,根据数量上出现的矛盾作适当调整,从而找到正确答案。

29、火柴游戏

使学生开动脑筋,从不同的角度进行对问题的充分思考。30、重叠问题

使学生掌握解决此类问题要运用到的一个重要原理——包含与排除原理,必要时可以借助示意图进行思考。

31、盈亏问题

使学生掌握解决此类问题的基本方法:份数=(盈+亏)÷两次分配数的差。此外,介绍解决特殊问题,如“两盈”的解决方法:两次盈数的差÷两次分配数的差=参与分配的对象的总数。

32、巧求周长(一、二)

让学生在面对复杂不规则图形求其周长时进行图形的割补,使复杂图形变成易于求其周长的长方形或正方形。并且使学生知道,分割(不补)后的周长比原周长长,反之,合成后的周长比原周长短。

33、面积计算

复习长方形和正方形面积计算的公式。此外使学生学会使用辅助线或运用割补、转化等技巧来计算复杂长方形和正方形的面积。

34、最佳安排

使学生在进行最佳安排时考虑以下几点:①要做哪几件事;②做每件事需要的时间;③弄清楚所做事情的先后顺序,即先做什么,后做什么,哪些事可以同时做。

35、抽屉原理

解决此类问题过程中,使学生注意哪些是“抽屉”,哪些是事物。

36、一题多解

小学奥数三年级 抽屉原理 篇7

抽屉原理

【知识与方法】

把4个苹果放到3个抽屉中去,那么,至少有一个抽屉中放有两个苹果。我们要重点理解什么叫至少?就是其中必有一个抽屉必须满足的最低条件。把它进一步推广,就可以得到数学里重要的抽屉原理。

用抽屉原理解决问题,小朋友一定要注意哪些是“抽屉”,哪些是“苹果”,并且要应用所学的数学知识制造抽屉,巧妙地加以应用,这样看上去十分复杂,甚至无从下手的题目才能顺利地解答。

例题1:把5个苹果任意放在4个抽屉里,其中一个抽屉至少放多少个苹果?

思维点拨: 把5个苹果放在4个抽屉里有6种不同的方法。

注:放的抽屉不同但个数相同时只算一种放法,一共有6种放法,分别是(0、0、0、5);(0、0、1、4);(0、1、1、3);(0、0、2、3);(0、l、2、2);(1、l、1、2)结论:发现总能找到一个抽屉里放了至少2个苹果。

模仿练习

1、(1)三个小朋友在一起玩,其中必有两个小朋友都是男孩或都是女孩,这是对的吗?为什么?

(2)学前班有40名小朋友,老师最少拿多少本书随意分给小朋友,才能保证至少有一个小朋友能得到不少于两本书?

例题2:任意的25个人中,至少有几个人的属相相同?

思维点拨: 根据已知,生肖共12种,把12个月看成12个抽屉。有25个苹果,放进12个抽屉:25÷12-=2(人)„„1(人),所以至少有2+1=3(名)学生是同年同月出生的。

模仿练习2

(1)有27个五年级学生,他们都是1 1岁,至少有多少个学生在同一个月里过生日?

(2)四(3)班有50名学生,其中年龄最大的11岁,最小的l0岁,那么这个班至少有几名学生是同年同月出生的?

例题3:有40辆客车,各种客车座位数不同,最少的有26座,最多的有44座,这些客车中至少有多少辆车的座位是相同的?

思维点拨:已知汽车的座位最少的有26座,最多的有44座,共有44—26+l=19(种)不同座位数的汽车。把这l9种不同座位数的汽车看作l9个抽屉,40辆汽车看作40个苹果,每只抽屉中放2个苹果,l9个抽屉中共放38个苹果,还有40一38=2(个)苹果放入相应的抽屉中,至少有一个抽屉中有3个苹果,也就是说,至少有3辆客车的座位是相同的。

模仿练习

3、(1)有40名学生,在一次考试中,最少的考76分,最多的考95分,76分到95分之间每个分段都有人考,这些学生中至少有多少人的分是相同的?

(2)红、白、黑三色袜子各5双,散放在桌面上,闭上眼睛一次至少要拿多少只,才能保证得到同样颜色的一双袜子?

例题4: 黑色、白色、黄色的筷子各8根,混杂放在一起.黑暗中想从这些筷子中取出颜色不同的两双筷子,问至少要取多少根才能保证达到要求。

思维点拨:最坏的情况是连续取8根,都同色,还剩两种颜色,再取2根,最坏的情况是又不同色,只要再取1根,就可以保证取出的筷子中有两双不同色。

模仿练习4(1)一个布袋里装有红、黄、蓝袜子各5只,问一次至少取出多少只,才能保证每种颜色至少有一只?

(2)一布袋中有红、黄、黑、白四种颜色的小玻璃球各1 0个,每个小球的形状、大小完全相同,问一次至少取出多少个,才能保证其中至少有四个颜色相同的小球?

例题

5、盒子里混装着5个白色球和4个红色球,要想保证一次能拿出两个同颜色的球,至少要拿出多少个球?

思路点拨:如果每次拿2个球会有三种情况:(1)一个白球,一个红球;(2)两个白球;(3)两个红球。不能保证一次能拿出两个同颜色的球。

如果每次拿3个球会有四种情况:(1)一个白球,两个红球;(2)一个红球,两个白球;(3)三个白球;(4)三个红球。这样每次都能保证拿出两个同颜色的球,所以至少要拿出3个球。

模仿练习5:

1,箱子里装着6个苹果和8个梨,要保证一次能拿出两个同样的水果,至少要拿出多少个水果?

2,书箱里混装着3本故事书和5本科技书,要保证一次能拿出两本同样的

书,至少要拿出多少本书?

【巩固与提高】

A级

1、有人说:“把7个苹果,随意放在3个抽屉里,一定能找到一个抽屉里有3个或3个以上的苹果。”这句话对吗?

2、一只口袋里有“大白兔”和“金丝猴”两种糖若干粒,你至少要抓出多少粒,才会保证有一种糖不少于2粒?

3、五(3)班共有学生53人,他们年龄相同,请你证明,至少有两个小朋友出生在同一周内。

4,书箱里混装着3本故事书和5本科技书,要保证一次一定能拿出2本故事书,至少要拿出多少本书?

5,抽屉里放着红、绿、黄三种颜色的球各3只,一次至少摸出多少只才能保证每种颜色至少有一只?

B级

6、某小学学生的年龄最大为l 3岁,最小为6岁,至少需从中挑选多少位同学,就一定能使挑出的同学中有两位同学岁数相同?

7,书箱里放着4本故事书,3本连环画,2本文艺书。一次至少取出多少本书,才能保证每种书至少有一本?

8、参加数学竞赛的210名同龄同学中,一定有多少名同学是同一个月出生的?

C级

小学三年级奥数题100道 篇8

姓名

2016.3.5

练习1 1、40个梨分给3个班,分给一班20个,其余平均分给二班和三班,二班分到()个。2、7年前,妈妈的年龄是儿子的6倍,儿子今年12岁,妈妈今年()岁。

3、同学们进行广播操比赛,全班正好排成相等的6行。小红排在第二行,从头数,她站在第5个位置,从后数她站在第3个位置,这个班共有()人。

4、有一串彩珠,按“2红3绿4黄”的顺序依次排列。第600颗是()颜色。

5、用一根绳子绕树三圈余30厘米,如果绕树四圈则差40厘米,树的周长有()厘米,绳子长()厘米。

6、一只蜗牛在12米深的井底向上爬,每小时爬上3米后要滑下2米,这只蜗牛要()小时才能爬出井口。

7、锯一根10米长的木棒,每锯一段要2分钟。如果把这根木棒锯成相等的5段,一共要()分钟。8、3只猫3天吃了3只老鼠,照这样的效率,9只猫9天能吃()只。

9、┖┴┴┴┴┴┴┴┴┴┚图中共有()条线段。

10、有10把不同的锁,开这10把锁的10把钥匙混在一起了,最多要试()次,才能把这10把锁和钥匙全部配对。

练习2

1、文具店有600本练习本,卖出一些后,还剩4包,每包25本,卖出多少本?

2、三年级同学种树80颗,四、五年级种的棵树比三年级种的2倍多14棵,三个年级共种树多少棵?

3、学校有808个同学,分乘6辆汽车去春游,第一辆车已经接走了128人,如果其余5辆车乘的人数相同,最后一辆车乘了几个同学?

4、学校里组织兴趣小组,合唱队的人数是器乐队人数的3倍,舞蹈队的人数比器乐队少8人,舞蹈队有24人,合唱队有多少人?

5、小强在计算除法时,把除数76写成67,结果得到的商是15还余5。正确的商应该是几?

6、一个书架有3层书,共有270本,从第一层拿出20本放到第二层,从第三层拿出17本放到第二层,这时三层书架中书的本数相等,原来每层各有几本书?

7、箱里放着同样个数的铅笔盒,如果从每只里拿出60个,那么5只箱里剩下铅笔盒的个数的总和等于原来2只箱里个数的和。原来每只箱里有多少个铅笔盒?

8、参加四年级数学竞赛同学中,男同学获奖人数比女同学多2人,女同学获奖人数比男同学人

数的一半多2人,男女同学各有多少人获奖?

9、两块同样长的布,第一块用去32米,第二块用去20米,结果所余的米数第二块是第一块的3倍。两块布原来各长多少米?

10、一个正方形,被分成5个相等的长方形,每个长方形的周长是60厘米,正方形的周长是多少厘米?

练习3

1、从10000里面连续减25,减多少次差是0?

2、在一道没有余数的除法算式里,被除数(不为零)加上除数和商的积,得到的和,除以被除数,所得的商是多少?

3、明明和花花用同一个数做除法,明明用12去除,花花用15去除。明明除得商是32余数是6,花花计算的结果应是多少?

4、三棵树上停着24只鸟。如果从第一棵树上飞4只鸟到第二棵树上去,再从第二棵树飞5只鸟到第三树上去,那么三棵树上的小鸟的只数都相等,第二棵树上原有几只?

5、两袋糖,一袋是84粒,一袋是20粒,每次从多的一袋里拿出8粒糖放到少的一袋里去,拿几次才能使两袋糖的粒数同样多。

6、小强、小清、小玲、小红四人中,小强不是最矮的,小红不是最高的,但比小强高,小玲不比大家高。请按从高到矮的顺序,把名子写出来。

7、用0、6、7、8、9这五个数字组成各个数位上数字不相同的两位数共有多少个?()个

8、五个同学参加乒乓球赛,每两人都要赛一场,一共要赛多少场?()场 9、2把小刀与3本笔记本的价钱相等,3本笔记本与6支铅笔的价钱相等,一把小刀1角8分,一支铅笔多少钱?

10、两筐水果共重124千克,第一筐比第二筐多8千克,两筐水果各重多少千克?

练习4

1、梨树比苹果树多78棵,梨树是苹果树的4倍,梨树、苹果树各有多少棵?

2、姐姐和妹妹共有书39本,如果姐姐给妹妹7本后就比妹妹少3本,那么姐姐和妹妹原来各有书多少本?

3、甲、乙、丙三个数,甲、乙的和比丙多59,乙、丙的和比甲多49,甲、丙的和比乙多85,求这三个数。

4、小明期末考试语文、数学、英语的平均分是95分,数学比语文多6分,英语比语文多9分,求三门功课各多少分?

5、小军一家四口的年龄之和是129岁,小军7岁,妈妈30岁,小军与爷爷的年龄之和比他父母之和大5岁,爷爷和爸爸的年龄各几岁?

6、一根木头锯成3段要10分钟,如果每次锯的时间相同,那么锯成10段要多少分钟?

7、食堂买了一批大米,第一次吃了全部的一半少10千克,第二次吃了余下的一半多10千克,这时还剩20千克,这批大米共有多少千克?

8、将被除数个位的0去掉与除数相等,被除数与除数和为374,则被除数、除数各是多少?

9、鸡和兔共有34只,鸡比兔的2倍多4只。鸡、兔各有几只?

10、合唱队男生人数比女生人数多46人,而且男生人数比女生的2倍少4人,问男生、女生各有多少人?

练习5

1、甲布比乙布长12米,丙布比甲布长28米,丙布的长是乙布的3倍,问甲、乙、丙布各长多少米?

2、甲袋盐的重量是乙袋盐的3倍,如果从甲袋中取出15千克盐倒入乙袋中,那么两袋盐的重量就相等了,问两袋盐有重量多少千克?

3、两堆煤重量相等,现从甲堆运走24吨煤,乙堆又运入8吨,这时乙堆煤的重量是甲堆的3倍,问两堆煤原来各有多少吨煤?

4.找规律填后面的数:1,4,9,16,(),36„„

2,3,5,8,(),21„„

5.运动场上有一条长45米的跑道,两端已插了二面彩旗,体育老师要求在这条跑道上每5米隔再插一面彩旗,还需要彩旗()面。

6.一条毛毛虫长到成虫,每天长一倍,10天能长到10厘米,长到20厘米时要()天。

9.王勤同学的储蓄箱内有2分和5分的硬币20个,总计人民币7角6分,其中2分硬币有()个。

0.一个钥匙开一把锁,现在有8把钥匙和8把锁被搞乱了,要把它们重新配对,最多试()次,最少()次。

练习6 1.哥哥5年前的年龄和妹妹3年后的年龄相等,当哥哥()岁时,正好是妹妹年龄的3倍。2.从午夜零时到中午12时,时针和分针共重叠()次。

3.一根木头长24分米,要锯成4分米长的木棍,每锯一次要3分,锯完一段休息2分,全部锯完需要()分。

4.王冬有存款50元,张华有存款30元,张华想赶上王冬。王冬每月存5元,张华每月存9元,()个月后才能赶上王冬。

5.三年级有164名学生,参加美术兴趣小组的共有28人,参加音乐兴趣小组的人数是美术小组人数的2倍,参加体育兴趣小组的是音乐小组的2倍,如果每人至少参加一项兴趣小组,最多只能参加两项兴趣小组活动,那么参加两项至少有()人。

6.张

三、李

四、王五三位同学中有一个人在别人不在时为集体做好事,事后老师问谁做的好事,张三说是李四,李四说不是他,王五说也不是他。它们三人中有一个说了真话,做好事的是()。7.一本故事书,李明12天可以看完,而王芳要比李明多2天看完,李明每天比王芳多看4页。这本故事书有()页。

8.一个三位数,各位上的数之和是15,百位上的数比个位上的数小5;如果把个位和百位数对调,那么得到的新数比原数的3倍少39。则原来的这个三位数是()。

9.今年父子的年龄和是48岁,再过四年父亲比儿子大24岁,今年父子各多少岁? 10.4年前父子年龄和是40岁,今年父亲年龄是儿子的3倍,今年儿子多少岁?

练习7

1.4年前父亲年龄是儿子的3倍,今年父亲比儿子大24岁,今年父子各多少岁? 2.父亲今年50岁,儿子今年26岁.问几年前父亲年龄是儿子的2倍?

3.兄弟两今年的年龄和是60岁,当哥哥像弟弟现在这样大时,弟弟的年龄恰好是哥哥的一半,哥哥今年几岁?

4.10年前父亲比儿子大24岁,10年后父子的年龄和是50岁,今年父子各多少岁? 5.今年哥哥26岁,弟弟18岁.问:几年前,哥哥的年龄是弟弟的3倍?

6.一白头老翁有三个孙子,长孙22岁,次孙20岁,小孙15岁,25年后,这三个孙子的年龄之和比白头老翁那时的年龄的2倍还少60岁,老翁现在多少岁? 7.计算:

(1)6+11+16+„+501

(2)1+5+9+13+„„+1989+1993

8.求从1~2000的自然数中,所有偶数之和与所有奇数之和的差。

9.下面的算式是按一定的规律排列的,那么,第100个算式的得数是()

4+2,5+8,6+14,7+20„„

10.建筑工地有一批砖,最上层两块砖,第2层6块砖,第3层10块砖„„(如图),依次每层比其上一层多4块,已知最下层有2106块砖,这堆砖共有多少块?

练习8

1.把100根小棒分成10堆,每堆小棒根数都是单数,且一堆比一堆少2根,应如何分? 2.100~200之间不是3的倍数的数之和是多少?

3.11~18是8个自然数的和再加上1992后所得的值恰好等于另外8个连续数的和,这另外8个连续自然数中的最小数是多少? 4、1+2+3+„„+100=

5、从1到300一共用了()个0。

6、甲仓库存粮108吨,乙仓库存粮140吨,要使甲仓库存粮数是乙仓库的3倍,()必须从乙仓库运出()吨放入甲仓库。

7、立新小学举行运动会,参加赛跑的人数是参加跳远的4倍,比参加跳远的多66人,参加赛跑的有()人,参加跳远的有()人。

8、鸡兔同笼,共100个头,320只脚,那么,鸡有()只,兔有()只。

9、小明今年2岁,妈妈26岁,那么,()年后妈妈的年龄是小明的3倍。

10、警方查询了三个可疑的人,这三个人中有一个是小偷,讲的全是假话。有一个人是从犯,说起话来真真假假,还有一个人是好人,句句话都是真的,查询中问及三个人的职业,回答是:

甲:我是推销员,乙是司机,丙是美工设计师。

乙:我是医师,丙是百货公司的业务员,甲呀,你要问他,他肯定说是推员。

丙:我是百货公司的业务员,甲是美工设计师,乙是司机。

请问这三个人中说假话的小偷是————

1、小张、小王和小李练习投篮球,一共投了100次,有43次没投进,已知小 张和小王一共投进了32次,小王和小李一共投进了46次,小王投进了()次。

练习9

2、有不同的语文书5本,数学书6本,英语书3本,自然书2本。从中任取一本,共有()种取法。

3、用7个7组成4数,加上运算符号使它结果等于100()

4、学雷锋小组为学校搬砖,如果每人搬18块,还剩2块;如果每人搬20块,就有一位同学没砖可搬。共有()块砖。

5、甲乙两港相距360千米,一轮船往返两港需要35小时,逆流航行比顺流航行多花了5小时,现有一机帆船,速度每小时12千米。这只机帆船往返两港要()小时?

6、某列车通过342米的遂道用了23秒,接着通过234米的遂道用了17秒,这列火车与另一列长88米、速度为每秒22米的列车错车而过,问需要()秒钟?

7、填上运算符号,使等式成立。13 11 6=24

2 3 4 5=1

8、按规律填数

(1)

1,4,7,10,(),(),19。

(2)

1,2,2,4,3,8,(),()。

(3)

0,1,4,9,(),25,()。

(4)

0,1,1,2,3,5,8,()。

(5)

2,6,18,54,(),()。

9、下面数列的每一项由3个数组成的数组表示,它们依次是;

(1,4,9),(2,8,18),(3,12,27)那么第50个数组内三个数是(,)

10、计算下列各题

1+2+3+4+„„+29+30

21+22+23+„„30+31+32

5+10+15+„„90+95+100

1+3+5+7+„„47+49

练习10

1、小明从一楼走到三楼要走30个台阶,那么他从一楼走到五楼共要走多少个台阶?

2、在除法算式□÷7=5„„□中,被除数最大是多少?

3、先观察再填空

3×4=12

33×34=1122

333×334=111222 3333×3334=()33333×33334=()3 3„„3 3×3 3„„ 3 4=()

100个3

99个3

4、方方和圆圆用同一个数做除法,方方用12去除,圆圆用15去除,方方除得的商是32还余6。圆圆计算的结果应该是多少?

5、小红家养了一些鸡,黄鸡比黑鸡多13只,比白鸡少18只。白鸡的只数是黄鸡的2倍。白鸡、黄鸡、黑鸡一共有多少只?

6、三年级数学竞赛获奖的同学中,男同学获奖的人数比女同学多2人,女同学比男同学获奖人数的一半多2人。男、女同学各有几人获奖?

7、庆祝“六一”儿童节,5个女同学做纸花,平均每人做5朵,已知每个同学做的数量各不相同,其中有一个人做得最快,她最多做多少朵?(简要说出算理)

8、一串珠子,按照3颗黑珠、2棵白珠,3颗黑珠、2颗白珠„„的顺序排列。问:①第14颗珠子是什么颜色的?②第1998颗珠子是什么颜色的?

9、巧添符号。

(1)6○6○6○6=1(2)6○6○6○6=2(3)6○6○6○6=3(4)6○6○6○6=4

三年级奥数题及答案 篇9

“奥数热”在中国的不断升温,下面是三年级奥数题及答案,希望大家会喜欢。

三年级

1.1袋糖和3袋盐放在一起称共重900克,5袋盐和1袋糖放在一起称共重1300克。一袋盐重多少克?一袋糖重多少克?

2.老师把1~64号拼音卡片依次发给甲、乙、丙、丁四个小朋友,那么第39张卡片应该发给谁?

三年级答案

1.5袋盐1袋糖-3袋盐1袋糖=2袋盐

1300-900=400克

400÷2=200克

200×3=600克

900-600=300克

答:一袋盐重200克,一袋糖重300克

2.每4张卡片看成一组:39÷4=9组……3张

三年级奥数3月21日二题 篇10

1、计算19+199+1999+19999+1999992、四根长都是8厘米的绳子,把它们打结连在一起,成为一根长绳,打结处每根绳用去1厘米,绳结长度不计,现在这根长绳长多少厘米?

解答:

1、19+199+1999+19999+199999

=(20+200+2000+20000+200000)-(1+1+1+1+1)

=222220-5

=2222152、分析:因为第一根和第四根只有一头打结,第二根和第三根有两头打结,所以一共要用去6个1厘米。4x8-6=26(厘米)

答:现在这根长绳长26厘米.三年级奥数3月22日一题(差倍问题)

1.两堆煤重量相等,现从甲堆运走24吨煤,乙堆又运入8吨,这时乙堆煤的重量是甲堆的3倍,问两堆煤原来各有多少吨煤?

解析:原来两堆重量相等,甲运走24吨煤,乙堆又运入8吨,可以得出现在乙堆比甲堆多了24+8=32(吨);这时乙堆煤的重量是甲堆的3倍,可以得出乙堆比甲堆多出2份,也就是说多出2份就多了32吨,因此一份就是32÷2=16(吨),现在的甲堆就有16吨,原来的甲堆有16+24=40(吨),乙堆就有40吨。

三年级奥数3月23日二题(重叠问题)

1、张老师出了两道题,做对第一题的有13人,做对第二题的有22人,两道题都做对的有8人,每人至少都做对一题,这个班一共有多少人?

2、有两块一样长的木板,钉在一起,如果每块木板长25厘米,中间钉在一起的长5厘米,现在长木板有多长?

解析:

1、两道题都做对的有8人,说明这8人既做对了第一题也做对了第二题,每人至少都做对一题,因此全班有13+22-8=27(人)。

2、中间钉在一起的长5厘米,因此两块木板的分别有5厘米重叠,最终重叠部分是5厘米,所以现在的木板长度是25+25-5=45(厘米)。

三年级奥数3月24日一题(和倍问题)

1、甲、乙一共有144本书,如果乙再给甲50本,那么甲是乙的3倍,那么甲原有多少本?

解析:

1、已知两个数的和,又知道乙给了甲50本就有倍数关系,分析得出这道题是和倍关系的应用题,乙给甲以后,甲是3份数,乙是1份数,和起来是4份数,4份的和是144本,所以求1份就要用144÷4=36(本),现在乙就是36本,原来乙有36+50=86(本),原来甲有144-86=58(本)。

三年级奥数3月26日二题1、569+388+147-328-167-529=?

2、3名工人5小时加工零件90个,要在10小时完成540个零件的加工,需要工人多少名?

解析:

1、解原式=(569-529)+(388-328)+(147-167)=40+60-20=80 凑整的方法。

2、先求3名工人1小时加工多少个零件:90÷5=18(个),在求1人1小时加多少个零件:18÷3=6(个),所以10小时加工540个零件,每小时就要加工540÷10=54(个),需要的工人:54÷6=9(人)。

三年级奥数3月27日一题

1、用一个杯子向空瓶倒水,如果倒5杯水连瓶共重500千克,如果倒进7杯水,连瓶共重660千克,求一杯

水和空瓶各重多少千克 ?

解析:

杯子从加入5杯水,到加7杯水,多加入了2杯水,总重量就增加了160千克,所以可以求出1杯水的重量是160÷2=80(千克),由此可以算出5杯水重:5x80=400(千克),那么空瓶重:500-400=100(千克)

三年级奥数3月28日一题

1、有10个小朋友,每2个人照一张合影,一共要照多少张照片?

解析:

此题可以转化为数线段问题,10个人为10个点,第1个人可以和其余的9人照相,第2个人只需要与其余8个人照相,因为第1个人与第2个人照相,也就是第2个人与第1个人也一起照相,所以以次类推:9+8+7+6+5+4+3+2+1=45(张)

三年级奥数3月29日一题

1、下面数列的每一项由3个数组成的数组表示,它们依次是;(1,4,9),(2,8,18),(3,12,27)那么第50个数组内三个数是(,)。

解析:

先看每一组的第1个数发现规律是:依次加1,由此得出第50组数的第1个是50,在看每一组的第2个数发现规律是:依次加4,或者是4乘几,得出第50组数的第2个是200,最后看每一组的第3个数发现规律是:依次加9,或者是9乘几,得出第50组数第3个是450。得出应该填(50,200,450)。

三年级奥数3月30日一题

1、桌上有10支点燃的蜡烛。风从窗户吹进来,吹灭了2支蜡烛,过了一会儿,又有一支蜡烛被吹灭。把

窗关起来,再没有蜡烛被吹灭,第二天早上还剩几支蜡烛?

解析:

由题目可知道桌子上点燃的10支蜡烛,共有3支蜡烛被吹灭,其余7支会一直燃烧下去,直到燃尽为止。所以最后剩下的蜡烛就是被风吹灭的3支蜡烛。

三年级奥数3月31日一题

1、昨天是9日,今天是星期三,29日是星期几?

分析:昨天是9日,今天就是10日(星期三),再过1个星期、2个星期、3个星期6都是星期三。从10日再过19天就是29日,所以,要看19天中有多少个7天,还余几天。

解:29-10=19(天)

19=7×2+5(或19÷7=2„„5)

星期三再过5天就是星期一,因此29日是星期一。

三年级奥数4月1日一题

1.新华书店第一天卖书460本,第二天卖书的本数是第一天的2倍,第三天卖书540本。第二天比第三天多卖书多少本?

解析:460×2-540=920-540=380(本)答:第二天比第三天多卖380本。

三年级奥数4月2日一题(乘法应用题)

1、学校开运动会,三年级有86人报名参加单项比赛,其他年级参加单项比赛的人数是三年级的4倍少5人。全校参加单项比赛的人数有多少人?

分析:先求出其他年级参赛人数,86×4-5=339(人),再加上三年级参赛人数,就可求出全校参赛人数。

解:(86×4-5)+86=425(人)。答:全校参赛425人。

本题中全校参赛人数也可以看成是三年级参赛人数的5倍少5人,所以可列式为86×5-5=425(人)。

三年级奥数4月3日一题(除法应用题)

1、工厂装配四轮推车,1个车身要配4个车轮。现在有40个车身,70个车轮。问:装配出多少辆四轮推车后,剩下的车身和车轮的数量相等?

分析:1个车身配4个车轮,即每装配出一辆四轮推车,用的车轮数比车身数多4-1=3(个)。现在车轮比车身多70-40=30(个),要把这30个车轮“消耗掉”,需装配30÷3=10(辆)四轮车。

解:(70-40)÷(4-1)=10(辆)。答:需装配出10辆四轮推车。

三年级奥数4月4日一题

1、三年级一班选举班长,每人投票从甲,乙,丙三个候选人中选择一人,已知全班共有52人,并且在计票过程中的某时刻,甲得到17票,乙得到16票,丙得到11票,如果得票比其他两人都多的候选人将成为班长,那么甲最少再得到多少张票就能够保证当选?

解答:17+16+11=44(人)(52-44)÷2=4(票)剩下的8票都平分给甲乙,这样甲就肯定比乙多一张。答:甲最少再得到4张票就能够保证当选!

三年级奥数4月5日一题(周期问题)

1、100个3相乘,积的个位数字是几?

解析:这道题我们只考虑积的个位数字的排列规律。1个3,积的个位是3;2个3相乘积的个位数字是9;3个3相乘积的个位数字是7;4个3相乘积的个位数字是1;5个3相乘积的个位数字是3„„可以发现,积的个位数字分别以3、9、7、1不断重复出现,即每4个3积的个位数字为一周期。100÷4=25(个),因此100个3相乘积的个位数字是第25个周期中的最后一个,即是1。

三年级奥数4月6日一题(重叠问题)

1、同学们排队做操,每行人数同样多。小明的位置从左数起是第4个,从右数起是第3个,从前数起是第5个,从后数起是第6个。做操的同学共有多少个?

解析:小明的位置从左数第4个,右数第3个,说明横行有4+3-1=6个人;从前数第5个,从后数第6个,说明竖行有5+6-1=10人,所以做操的同学共有:6×10=60人。

三年级奥数4月7日一题(植树问题)

1、小朋友们植树,先植一棵树,以后每隔3米植一棵,已经植了9棵,第一棵和第九棵相距多少米? 解析:根据“已经植了9棵”,我们可以看出,第一棵树和第九棵树之间的间隔是9-1=8个,每个间隔是3米,所以第一棵和第九棵相距3×8=24米。

三年级奥数4月8日一题(面积问题)

1、把一张长为4米,宽为3米的长方形木板,剪成一个面积最大的正方形。这个正方形木板的面积是多少平方米?

解析:要使剪成的正方形面积最大,就要使它的边长最长,那么只能选原来的长方形宽为边长,即正方形的边长是3米。正方形的面积:3×3=9米。

三年级奥数4月9日一题(还原问题)

1、一个减24加上15,再乘8得432,求这个数。

解析:我们可以从最后的结果432出发倒着推想。最后是乘8得432,如果不乘8,那应该是432÷8=54;如果不加上15,应该是54-15=39;如果不减去24,那应该是39+24=63。因此,这个数是63。

三年级奥数4月10日一题(平均数问题)

1、英文测验,小明前三次平均分是88分,要想平均分达到90分,他第四次最少要得几分?

解析:

方法一首先算出前三次的总分88×3=264(分),在算四次的总分90×4=360(分)再用360-264=96(分)方法二第四次后的平均成绩是90分,前三次后的平均成绩是88分,第四次只有超过90分并给前面的三次每次2分才能达到平均成绩,所以第四次最少要得96分,90+(90-88)×3=96(分)

三年级奥数4月11日四题(数字趣谈)

1、在0到100中,5的倍数有多少个?

2、在10到100中间有多少个数是3的倍数?

3、从到100,数字“5”出现过几次?

4、从1写到100,一共写了多少个数字“1”?

解析:

1、20个2、30个

3、出现了20次数字“5”

4、出现了20次“1”。

三年级奥数4月12日一题

1、计算:1993+1992—1991—1990+1989+1988—1987-1986+„+5+4—3—2+1

解析:原式=(1993+1992—1991—1990)+(1989+1988—1987—1986)+„+(5+4—3—2)+1

=4×498+1

=199

3三年级奥数4月13日一题(正归一问题)

1、一只小蜗牛6分钟爬行12分米,照这样速度1小时爬行多少米?

解析:先求小蜗牛一分钟行多少?12÷6=2(分米),在求1小时行多少?2×60=120(分米)=12(米)

三年级奥数4月14日-4月17日(年龄问题)

1、3年前,妈妈的年龄是小明的4倍,今年小明12岁,妈妈今年多少岁?

2、2年前,奶奶的年龄是孙子的8倍,奶奶今年66岁。孙子今年多少岁?

3、父亲今年36岁,儿子今年6岁,几年后父亲的年龄是儿子的4倍?

4、爸爸今年35岁,妈妈今年31岁。当爸爸和妈妈的年龄之和等于98岁的时候,爸爸妈妈各是多少岁? 解析:

1、(12-3)×4+3=39(岁)

2、(66-2)÷8+2=10(岁)

3、(36-6)÷(4-1)-6=4(年)

4、爸爸的年龄:[98+(35-31)]÷2=51(岁)妈妈的年龄:51-4=47(岁)

三年级奥数4月18日(和差问题)

1、南京长江大桥共分两层,上层是公路桥,下层是铁路桥。铁路桥和公路桥共长11270米,铁路桥比公

路桥长2270米,问南京长江大桥的公路和铁路桥各长多少米?

分析:和差基本问题,和1127米,差2270米,大数=(和+差)/2,小数=(和-差)/2。

解:铁路桥长=(11270+2270)/2=6770米,公路桥长=(11270-2270)/2=4500米。

三年级奥数4月19日(和差问题)

1、在一个减法算式里,被减数、减数与差的和等于120,而减数是差的3倍,那么差等于多少?

分析:这是一个和倍问题。减数是差的3倍,那么被减数就是差的4倍,所以被减数、减数与差的和就是差的8倍,应该等于120,所以差=120÷8=15。

解:120÷(1+3+1+2)=15答:差等于15。

三年级奥数4月20日(智巧趣题)

1、用数字1,1,2,2,3,3拼凑出一个六位数,使两个1之间有1个数字,两个2之间有2个数字,两个3之间有3个数字。

上一篇:13年上学期秘书处工作总结下一篇:市党费收缴、管理、使用情况自查报告