二次根式试题

2025-03-17 版权声明 我要投稿

二次根式试题(精选10篇)

二次根式试题 篇1

1、定义:一般地,形如√ā(a≥0)的代数式叫做二次根式.当a>0时,√a表示a的算数平方根,√0=0

2、概念:式子√ā(a≥0)叫二次根式.√ā(a≥0)是一个非负数.II.二次根式√ā的简单性质和几何意义 1)a≥0;√ā≥0 [ 双重非负性 ] 2)(√ā)^2=a(a≥0)[任何一个非负数都可以写成一个数的平方的形式] 3)√(a^2+b^2)表示平面间两点之间的距离,即勾股定理推论.III.二次根式的性质和最简二次根式 1)二次根式√ā的化简 a(a≥0)√ā=|a|={-a(a<0)2)积的平方根与商的平方根 √ab=√a·√b(a≥0,b≥0)√a/b=√a /√b(a≥0,b>0)3)最简二次根式 条件:

(1)被开方数的因数是整数或字母,因式是整式;

(2)被开方数中不含有可化为平方数或平方式的因数或因式.如:不含有可化为平方数或平方式的因数或因式的有√

2、√

3、√a(a≥0)、√x+y等;

含有可化为平方数或平方式的因数或因式的有√

4、√

9、√a^

2、√(x+y)^

2、√x^2+2xy+y^2等 IV.二次根式的乘法和除法 1 运算法则

√a·√b=√ab(a≥0,b≥0)√a/b=√a /√b(a≥0,b>0)

二数二次根之积,等于二数之积的二次根.2 共轭因式

如果两个含有根式的代数式的积不再含有根式,那么这两个代数式叫做共轭因式,也称互为有理化根式.V.二次根式的加法和减法 1 同类二次根式

一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.2 合并同类二次根式

把几个同类二次根式合并为一个二次根式就叫做合并同类二次根式.3二次根式加减时,可以先将二次根式化为最简二次根式,再将被开方数相同的进行合并

Ⅵ.二次根式的混合运算 1确定运算顺序 2灵活运用运算定律 3正确使用乘法公式 4大多数分母有理化要及时 5在有些简便运算中也许可以约分,不要盲目有理化 VII.分母有理化 分母有理化有两种方法 I.分母是单项式

如:√a/√b=√a×√b/√b×√b=√ab/b II.分母是多项式 要利用平方差公式

如1/√a+√b=√a-√b/(√a+√b)(√a-√b)=√a-√b/a-b 如图

II.分母是多项式 要利用平方差公式

二次根式试题 篇2

一、忽视整体性

例1化简:

剖析: 这里的除数应是( 一个整体) .

二、同类二次根式的概念不清

剖析: 错在这一步,因为不是同类二次根式,所以不能合并 . 究其错因是对同类二次根式的概念理解不清 . 正确答案为:

三、与形近式子相混淆

剖析: 错解错在套用乘积的算术平方根性质:,符号代表开平方,也起着括号的作用,对于不能用二次根式性质计算的,应如同先要进行括号内的运算一样,根号内的运算要首先进行 .注意

四、违背运算顺序

剖析: 错解错在运算顺序上,由于乘除是同一级运算,按运算顺序的规定谁在前就先算谁,这里应先做除法 .

五、误用分配律

剖析: 错解错在除法运算套用分配律,此类错误在有理数及分式运算中也时有发生 . 要记住: a÷ ( b + c) ≠a÷b + a÷c. 这里应先算括号里的 .

六、忽视二次根式的非负性

剖析: 虽然a为正数,但在0 < a < 1的条件下,,而,这是二次根式的非负性 . 许多同学解这类题目时,往往忽视这一点 .

正解: 因为0 < a < 1,所以a <1/a

永不言“负”的二次根式 篇3

一 知识要点

1.二次根式的性质:

(1) (3)积的算术平方根:

(4)商的算术平方根:

2.二次根式的运算法则:

(1)乘法运算:

(2)除法运算:

(3)二次根式的加减:先将各二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.

二 解题技巧

1.对于二次根式的概念及其性质的复习,要抓住两个关键点:一是二次根式的概念,在理解二次根式意义的时候,应注意被开方数非负的条件,并会确定其中字母的取值范围:二是弄清二次根式的性质:(1)、

2.与整式的乘除类似,二次根式的乘除也可以运用运算律、乘法公式等来化简运算,解题时要抓住三个关键点:

(1)最简二次根式应满足两个条件:①被开方数的因数是整数,因式是整式;②被开方数中不含能开得尽方的因数或因式.

(2)二次根式的乘法法则,即.运用法则进行二次根式的乘法运算时,要结合两个公式进行:①

(3)二次根式的除法法则,即运用法则化简二次根式时,要结合公式

3.与整式的加减类似,二次根式的加减中,化简后被开方数相同的根式类似于同类项.加法的运算律也同样适用,合并被开方数相同的二次根式,类似于合并同类项.

三 典型题赏析

解析:2x-5与5-2x应同时为非负数,即2x-5≥o且5-2x≥o,故代人已知式求得y=-3,所以应选A.

反思:二次根式中的被开方数是非负数,由此可以解出x的值,进而求出y的值.

例2 已知a为实数,求代数式的值,

简析:由,所以a=0,从而可求,

例3 实数a在数轴上的位置如图1所示,则化简后为().

解析:从数轴可知30,所以故选D.

解析:原式

反思:化去分母中的根号时,若分母仅有一项,则分子分母同时乘以分母中的根式:若分母有两项,则分子和分母同时乘以分母中根式的有理化因式(以便使分母能运用平方差公式将根号化去).

例5 先化简,再求值:其中x=

解析:略.

反思:与二次根式有关的条件求值,一直是中考的热点之一,常与整式、分式的化简结合在一起.这类问题往往要求先化简求值式,再将数值代入求值:有时还需要将所给的条件式进行化简或变形.这类题目解法灵活多变,技巧性较强,

反思:把被开方式通分并把分子写成完全平方式的形式,是解题的关键.

例7 图2是一辆自行车的侧面示意图.已知车架中AC的长为42cm,座杆AE的长为18cm.点E,A,C在同一条直线上,后轴轴心B与中轴轴心C所在的直线BC与地面平行,且BC=50cm.ED⊥BC于D.BD=32cm.ED的延长线交地面于F,求车座E到地面的距离EF

简析:欲求EF的长,只需求DE的长,因为DF已知.可在Rt△EDC中利用勾股定理求出ED.再利用EF=ED+DF即可,具体计算略.

例8(2014年·镇江)读取下面表格中的信息,然后解决后面的问题.

因,故n可以取得的最小整数是7.

反思:通过求和,找出与n的关系,是解题的关键.

四 易错点析

1.概念理解不透彻

例9 如果是二次根式,那么x的取值范围是______.

错解:由题意可知,所以2-x≤0,即x≥2.

剖析:本题忽视了分母2-x≠0的情况.正确的答案是x>2.

2.忽视二次根式的非负性

例l0 已知xy<0,則化简的结果是().

错解:故选A.

剖析:上解忽略了隐含条件.而由xy<0,知x≠0且y≠0,所以,y>0,x<0.上面化简的结果显然是个负数.

二次根式单元测试 篇4

1.在、、、、中是二次根式的个数有______个.

2.当=

时,二次根式取最小值,其最小值为。

3.化简的结果是_____________

4.计算:=

5.实数在数轴上的位置如图所示:化简:.

6.已知三角形底边的边长是cm,面积是cm2,则此边的高线

7.若则

8.计算:=

9.已知,则

=

10.观察下列各式:,,……,请你将猜想到的规律用含自然数的代数式表示出来是      .

11.下列式子一定是二次根式的是()

A.

B.

C.

D.

12.下列二次根式中,的取值范围是的是()

A.

B.

C.

D.

13.实数在数轴上的对应点的位置如图所示,式子①②③④中正确的有()

A.1个

B.2个

C.3个

D.4个

14.下列根式中,是最简二次根式的是()

A.B.C.D.15.下列各式中,一定能成立的是()

A.

B.

C.

D.

16.设的整数部分为,小数部分为,则的值为()

A.

B.

C.

D.

17.把根号外的因式移到根号内,得()

A.

B.

C.

D.

18.若代数式的值是常数,则的取值范围是()

A.

B.

C.

D.或

19.计算:

(1)

(2)

(3)

(4)

20.已知:,求:的值

21.如图所示,有一边长为8米的正方形大厅,它是由黑白完全相同的方砖密铺面成.求一块方砖的边长.

22.如图所示的Rt△ABC中,∠B=90°,点P从点B开始沿BA边以1厘米/秒的速度向点A移动;同时,点Q也从点B开始沿BC边以2厘米/秒的速度向点C移动.问:几秒后△PBQ的面积为35平方厘米?PQ的距离是多少厘米?(结果用最简二次根式表示)

23.阅读下面问题:

;;,……。试求:

(1)的值;

(2)(n为正整数)的值。

(3)根据你发现的规律,请计算:

24.已知.甲、乙两个同学在的条件下分别计算了和的值.甲说的值比大,乙说的值比大.请你判断他们谁的结论是正确的,并说明理由.

《二次根式》教学反思 篇5

从实际问题列式,分析它们共同属性:正数(或0)的算术平方根,给二次根式下一个定义,从定义出发确定二次根式有意义的条件,进一步深刻理解二次根式,符合概念课教学的要求,学生掌握情况比较好,概念课教学的五个基本步骤:

(1)先给出实例。

(2)分析共同属性。

(3)下定义。

(4)概念应用。

(5)概念之间关系,在这节课很好体现。

在促进学生探索求知和有效学习方面还存在明显不足。新的教学理念要求教师在课堂教学中注意引导学生探究学习,在我的课堂教学中,经常为了完成教学任务而忽视这方面的引导。在本章中,其实有许多内容可以进行这方面的尝试。如判断二次根式中字母的取值范围、选取有理化因式、选择不同的运算途径等都可以让学生进行探究和归纳。在二次根式的运算中我就直接告诉学生:加减运算时利用公式,乘除时利用公式和,结果大部分学生并不接受。若能让学生在探究的基础上归纳出方法,学习的效果会提高很多,学习的能力也会不断提高。

《二次根式》教学反思 篇6

本节内容是在前一节二次根式的学习基础上,要求学生能熟练运用乘法法则和除法法则进行化简和计算。在教学过程中,通过一些特殊的例子让学生归纳出乘法法则和除法法则,学生比较容易接受。但是在具体进行化简和计算的过程中,学生对二次根式乘法法则和除法法则理解上问题不大,但常常忘记计算结果需要化简,此外被开方数是多项式的乘除法运算上容易出现错误,对分母有理化还不够熟练。因此还要加强训练,否则,在下一节二次根式的加减和混合运算时出现的错误会更多。

总之,二次根式的乘除运算法则的学习和应用的过程中,渗透分析、概括、类比等数学思想方法,提高学生的思维品质和学习兴趣,鼓励学生大胆猜想,积极探索,运用类比、归纳和从特殊到一般的思考方法激发学生创造性的思维。

“二次根式”教学分析及施教建议 篇7

1. 教材整体感知

本章主要内容是二次根式的概念、运算和最简二次根式, 与实数、整式、勾股定理等内容紧密联系, 旨在拓宽学生对“式”的认识.教学内容的呈现方式遵循从“特殊”到“一般”的原则, 活动设计延续本套教材的体系, 让学生乘坐“观察”、“思考”、“探究”、“讨论”和“归纳”之舟, 去认识数学的本质, 提高学生的合情推理、运算和思辨能力, 培养学生严谨的科学态度.本章也是学生后续学习解直角三角形、一元二次方程等内容的重要基础.

2. 重点与难点分析

教学重点: (1) 二次根式的概念及其运用; (2) 二次根式的化简和运算; (3) 最简二次根式的概念.

教学难点: (1) 对二次根式 (a≥0) 的非负性, 的理解及应用; (2) 理解二次根式的乘、除法的应用条件和二次根式的性质、运算的合理性; (3) 利用最简二次根式的概念进行化简和运算.

二、学情分析

1. 学情基础分析

学生已学习了“整式”“平方根”“算术平方根”“勾股定理”等内容, 这些知识和经验已具备了建构二次根式的知识基础和心理基础, 但值得提出的是, 学生的学习过程是学生对新知识、新技能的内化过程.在这个内化过程中, 要让学生在情感、思想、心理等方面做好接收新知识的准备, 因此, 本章教学应在“实数”和“整式”的基础上进行.

2. 思维障碍分析

二次根式的运算比整式、分式复杂得多, 学生对此会产生一些认知上的思维障碍.主要表现在: (1) 忽略二次根式的被开方数是非负数和二次相式本身的非负性; (2) 对最简二次根式的理解和运用不到位; (3) 对教材备注“在本章中, 如果没有特别说明, 所有的字母都表示正数”会产生字母只表示正数的片面认识; (4) 利用二次根式的运算解决实际问题, 学生会在一开始计算时就取近似值, 造成其结果不准确, 等等.

3. 学习方法探究

数学学习能力包括观察、记忆、思维、想象、注意以及自学、交往、表达等方面.教师在教学中要善于疏通信息渠道, 架设起知识与能力相融合的桥梁. (1) 鼓励自主探索, 引导合作交流.要鼓励学生自主探索与合作交流, 引导学生通过观察、计算、猜想、归纳和交流等数学活动, 提高学习兴趣、积累活动经验、发展思辨能力, 进而提高他们的数学素养; (2) 注意探究归纳, 关注代数推理.对于二次根式的性质, 教材中考虑到学生的年龄特征, 首先, 在“探究”栏目中给出几个具体问题, 让学生根据具体数据进行计算、分析得出结果, 然后再分析这些结果的共同特征, 由特殊到一般, 归纳得出结论, 旨在培养学生利用代数语言进行推理的能力; (3) 重点在于理解, 力求灵活运用.二次根式的性质是后续学习的基础, 因此教学中要注意让学生在理解的基础上加以记忆, 并灵活应用.

三、施教建议

1. 把握教材精髓

(1) 明确编写意图.教材编写意图是: (1) 淡化概念, 突出概念实质.教材对二次根式和代数式等概念, 只要求让学生有所体会, 不必深究, 这样做的目的是为了淡化概念, 突出概念实质; (2) 通过探究活动, 经历认识过程.教材让学生通过观察、思考、讨论等探究活动, 利用发现的规律进行计算, 然后利用计算器进行验证, 最后归纳得出二次根式的运算法则, 这个过程实际是让学生通过探究活动经历一个由特殊到一般的认识过程, 通过这样的探究活动改变了学生的学习方式, 发展了学生的思维能力.

(2) 凸显数学本质.本章的重点是让学生理解和掌握二次根式的性质和运算, 因此教材的重点是说明其性质和法则成立的合理性, 突出其数学本质.如教材在介绍二次根式的性质时;首先让学生通过探究活动感受这个性质, 然后再从算术平方根的意义出发, 结合具体例子对这个性质进行分析, 最后由特殊到一般得出这个性质, 这样就可以使学生对这个性质的数学实质有了较深刻的认识.又如在介绍二次根式的乘除运算时, 没有给出分母有理化的概念, 而是结合具体例子说明了分母有理化的要求.再如对于二次根式的加减运算时, 回避了同类二次根式的概念, 突出强调了运算时先将二次根式化成最简二次根式再进行合并的方法。这样处理的目的是让学生将学习的重点放在理解数学的本质上来, 以提高学生的数学能力.

(3) 注意教材要求.为了把握好教材的精髓, 还必须注意教材要求: (1) 讨论二次根式的被开方数中字母的取值范围, 这样可以加深学生对二次根式定义的理解.但这类问题只限于用在一元一次不等式解决的范围内, 不宜扩充到较复杂的情况; (2) 二次根式的性质中, 教材中仅考虑了a≥0这种情况, 对的情形不做考虑; (3) 本章的重点是二次根式的运算, 主要让学生掌握二次棍式的运算方法, 既要注意到它与有理数、整式之间的关系, 又要注意其自身的特点, 等等.

2. 教法探讨

(1) 注意纵向联系.本套教材将实数内容分为两章, 即第十章“实数”和本章内容.通过第十章的学习, 学生对数的认识已由有理数的范围扩大到实数范围, 并对实数的运算性质和运算法则有了初步的感知, 实际上在“实数”一章中, 学生对二次根式的加减运算已经有所接触, 本章在此基础上利用分配律给出了加减法的运算法则, 所以教学时要充分在“实数”基础上进行教学, 使学生进一步体会运算律在数的扩充过程中的一致性.同时还要注意与第十五章“整式”的联系, 由于数式通性, 当把二次根式中的实数看成字母时, 二次根式的运算实际上就是整式的运算.因此, 教学中要注意加强知识的纵向联系, 使学生的学习形成正迁移.

(2) 渗透数学思想.掌握好数学思想方法能使学生对数学知识本质的认识不断深化, 使学生在解决问题的过程中避免盲目性, 提高学生分析问题和解决问题的能力.本章中渗透数学思想的方法主要有数形结合法、类比法、分类讨论法和不完全归纳法等.如在“二次根式的加减”中, 教材上的两个提示语“比较二次根式的加减与整式的加减, 你能得出什么结论?”和“例5第 (1) 、 (2) 小题分别利用了多项式乘法法则和公式 (a+b) (a-b) =a2-b2, 在二次根式的运算中, 多项式乘法法则和公式仍然适用”, 这些都用到了类比思想, 又如在介绍二次根式的乘除运算时, 通过探究栏目引导学生从具体数据 (用计算器) 由特殊到一般, 归纳 (不完全归纳法) 得出二次根式乘法 (除法) 的运算法则, 不仅渗透了不完全归纳思想, 同时也提高了学生的合情推理能力.

(3) 开展探究活动.学生的数学活动经验是通过观察、体验、感悟与思考, 从感性向理性飞跃时所产生的.认识和获得解决问题的策略, 是学生发展的基础.为了使学生获得更多的数学活动经验, 在本章的教学中应积极开展探究活动. (1) 开展探究交流.在知识发生发展过程中要针对教学的重点和难点, 开展自主探索与合作交流, 促使学生学习行为的转变; (2) 加强实际应用.以教材中的裁截板材、确定纸张规格、电视塔的传播半径问题为切入点, 加强实际应用, 让学生感受二次根式的应用价值; (3) 亲密数学文化.教材中介绍了海伦公式和秦九韶公式的历史, 教学中还应引导学生阅读有关数学文化史料, 加强爱国主义教育和提高学生的数学素养; (4) 开展数学活动.教材中的“数学活动”有两个:通过测量计算发现书籍、纸张的长与宽之间的关系和做一个长、宽、高都是用二次根式表示的无理数长方形纸盒.教学中, 还应鼓励学生在生活中发现更多地有关二次根式应用的实例.

(4) 弹性设计教学.本章主要内容是二次根式的化简和运算, 需要一定的练习才可以掌握化简方法和运算规律.因此, 教学中可以适当增加教学内容的弹性和灵活性, 使学生更好地理解二次根式的意义, 更好地掌握二次根式的性质和运算, 在加强练习的过程中, 要注意知识之间的相互联系, 使学生养成一种以联系和发展的观点学习数学的习惯, 为后续的学习打下良好的基础.为了加强学生对二次根式的运算与整式运算之间联系的理解, 可补充一些计算题.

解析:让学生认识到可以将看作两个整体, 先用平方差公式, 再用完全平方公式进行计算, 这样加深了二次根式与整式的联系, 拓宽了学生的视野, 深化了学生对“式”的认识.

还可以补充一些开放性的问题:

若 (a、b均为实数) , 请回答下列问题: (1) a=______, b=______; (2) 写出第n个关系式______; (3) 验证你写出的关系式的正确性.

解析:通过本例中三个问题的训练, 不仅使学生学会观察、归纳的学习能力, 而且提高了学生应用二次根式解决问题的能力.

(5) 关注有效生成.学生掌握知识、形成能力是一个厚积薄发的过程, 这就要求我们在平时的教学中应不失时机地对学生进行培养.对于课堂教学, 要十分关注其有效生成, 注意综合运用.二次根式很多时候都是和其他知识联系在一起的, 这一点应让学生了解.

例3若, 求a-19952的值.

解析:先由a-2000≥0, 判断出1995-a的值是负数, 去掉绝对值后便可求得结果.本例主要是让学生看出解决这个问题的“钥匙”是二次根式的被开方数是非负数, 因此应加深对二次根式的被开方数是非负数的认识和应用, 鼓励不同的解法.在二次根式的运算中, 有些算式可以鼓励学生有不同的解法.

但值得注意的是, 鼓励不同解法的目的是为了引导学生注意观察、分析运算式的特点, 选择一种简便的方法进行运算, 培养学生思维的灵活性和合理性.

(6) 加强错误辨析.二次根式在学生已学过的数学知识中是符号感最强的内容之一, 因此学生在二次根式的学习过程中会发生各类错误, 我们要加强思辨训练, 做到防患于未然.如最简二次根式是本章的一个重要概念, 它在二次根式的性质、运算中扮演十分重要的角色, 必须使学生准确理解和正确掌握, 可举一些辨析例题.

例5下列计算正确吗?为什么?

解析:通过这几道辨析题向学生说明: (1) 只有化成最简二次根式后, 被开方数相同的二次根式才能合并; (2) 只有积和商的算术平方根性质, 而没有和差的算术平方根性质, 等等.

二次根式试题 篇8

一、 转化思想

转化不仅是一种解题思想,也是一种思维策略,更是一种有效的数学思维方式.所谓的转化思想方法,是把复杂的问题通过变换转化为简单问题;将难解的问题通过变换转化成容易求解的问题;将未知的问题通过变换转化为已知的问题,以达到解决问题的目的.

二次根式中常用以下两种转化方法:

1. 确定二次根式中字母的取值范围,可用方程或方程组解决问题. 如:已知在实数范围内有意义,则x的取值范围是_______. 本题要考虑两个方面:一是对于二次根式来说被开方数要为非负数,二是作为分母来说要不等于零,所以,可列方程组

二、 整体思想

整体思想就是从问题的整体出发,突出对问题的整体结构的分析,发现问题的整体特征. 在本章的学习中常把某些式子或图形看成一个整体,把握它们之间的关联,进行有目的、有意识的整体处理,从而使得问题简单化、明晰化.

以上是以二次根式为例,总结的几种数学思想方法,在平时的学习过程中同学们还会遇到其他的思想方法,大家要充分掌握,这对提高思考能力、解题能力有事半功倍的作用.

(作者单位:江苏省盐城市城北中学)

二次根式评课稿 篇9

《二次根式》说课稿

各位老师:大家好!今天我说课的内容是是人教版八年级下册第十六章《二次根式》(第一课时).本次说课包括四个部分:教材分析,教法与学法分析,教学过程和板书设计.一、教材分析

1、教材的地位与作用:“二次根式”是《课程标准》“数与代数”的重要内容。本章是在第13章《实数》的基础上,进一步研究二次根式的知识。它与已学内容“实数”“整式”联系紧密,同时也是后面的“勾股定理”,“一元二次方程”,“二次函数”等内容的重要基础。本节课涉及的二次根式的字母取值范围的问题是中考的必考题型。

2、教学目标:

(1)、知识目标:1.理解二次根式的概念。2.确定二次根式中字母的取值范围。

(2)、能力目标:培养学生观察、分析、归纳等能力,体会从特殊到一般的学习方法。

(3)、情感目标:使学生经历观察、猜想、总结、应用等数学活动,感受和体验数学活动的乐趣,并提高学生应用数学的意识。

3、教学重点、难点

教学重点: 二次根式的概念。

教学难点:确定二次根式中字母的取值范围。

二、教法与学法分析

(1)、本节课中,我采用学案导学和小组合作的方法进行教学,并充分利用多媒体辅助教学。通过学生的自主学习,合作交流和教师的适当点拨,使学生达到对知识的发现和掌握。

(2)、学法:采取自主学习和探究学习的方法,以便更好地发挥学生的主观能动作用,提高他们的综合能力。

三、教学过程分析

(一)、温故知新,情境导入。1.复习近平方根和算术平方根的有关知识。2.创设情境,提出问题:由实际问题得到的式子有什么共同特点?

设计意图:通过创设情境,把数学问题与学生的现实生活联系起来,激发学生的学习兴趣,让学生从不同的式子中探寻规律,由特殊到一般引入二次根式的概念。(二)、概念练习,突出重点。

在一组不同的式子中让学生指出哪些是二次根式?

设计意图:为学生提供练习的时间和空间,使他们进一步理解二次根式的概念。(三)、例题讲解,突破难点。

通过循序渐进的例题使学生讨论交流归纳确定二次根式中字母取值范围的方法。例1:要使x?2有意义,字母x的取值必须满足什么条件?

有意义,字母x必须满足什么条件? 例2:要使思考:把题目改为:要使有意义,字母x必须满足什么条件? 3?x 设计意图:通过有梯度的例题的学习,让学生有一个由浅入深的学习过程,从而真正掌握确定二次根式中字母取值范围的题型。同时采用变式设计,步步深入,使本节课的教学难点迎刃而解。

(四)、巩固运用,加深理解

1、通过仿例题的基础练习让学生体验学习的成就感。

2、通过课堂检测,综合考察学生对本节知识的掌握程度。(五)、质疑问难,总结评价

总结本课知识,根据各小组表现评分。

设计意图:学生共同总结,取长补短。总结各小组得分情况,通过小组评比的形式,提高学生学习兴趣,促进学生学习的主动性,形成良好的竞争意识。

四、板书设计

采用纲领式的板书,体现本节课的主要内容,使学生有“话”可说,有“理”可循。16.1.1二次根式

1.定义:一般地,形如

a(a?0)的式子叫做二次根式。a?0?0 a(a?0)a(b?0)b 篇三:《二次根式》复习课说课稿

《二次根式》复习课说课稿

一、教学内容与学情分析

1.本课在教材、新课标中的地位与作用

本课内容是二次根式章节的复习课,是学生在学完新人教版八年级教材下册第十六章后的一个总结复习。二次根式是初中数学知识体系与结构中一个不可或缺的部分,是中考直接考查的一个重点内容。本课复习内容的教学将让学习更为系统地认识二次根式,并在学习新知的基础上得到一个升华。同时也是为了学生能够在下一张勾股定理以及九年级的解直角三角形学习中打下一些有效的基础。

关于二次根式在《数学课程标准》中提出要求: 1.了解二次根式的概念及其加、减、乘、除运算法则; 2.会用它们进行有关实数的简单四则运算(不要求分母有理化);

在本章内容新授过程中,教师更多的关注了学生对概念及运算法则的讲解,对方法、技巧、能力等各方面并没有对学生作出更高的要求,同时学生本身在学习新课知识时,也是一种模糊的感觉。对课程标准提出的第2点:会用它们进行有关实数的简单四则运算并不能很有效的完成。而本节复习课的教学将给学生一个巩固提高的机会,让大多数学生能加深对二次根式的运算的理解,同时更是为学生掌握更多的学习方法、学习技巧,提高学生的能力提供机会。彻底地贯彻课程标准所提出的要求,完成九年级学生应完成的任务。2.本课知识点与前后知识点的联系

本课内容是综合性复习,所讲知识点学生基本都熟悉,只不过是没有真正的理解透彻,甚至有些学生可能都已经有部分渐渐淡忘。本节内容的教学其实从本质上讲就是为学生理清知识点,建立一个完整的知识体系与结构。把已学知识系统、全面地呈现在学生的面前,同时也是为了让学生能够对二次根式的理解与运算真正落实到位作出努力。

其实,本课内容的教学不单单是为了复习巩固,更重要的是让学生对本章的知识在初中数学教材中明确地位与作用,让学生感受本章知识的重要性,为即将学习后面的知识做好铺垫工作。

3.学生已有的知识基础

由于新课内容结束离综合性复习时间较长,可以说大多数学生对本章的知识并不是非常熟悉,但学生已具备的知识基础从理论上讲应该是完全具备的,只不过需要一个回顾的过程。同时,随着知识面的拓广以及一些章节中对二次根式的应用,逐步让学生对二次根式这一章的内容也有了更多的认识。在复习时,学生应该说还是很易于接受的。4.学生学习新知的障碍 在学生已有的知识基础上,本节课的教学其实更主要的是经历回顾、理解、巩固的过程。本节教学内容的新知并不是真正的“新的知识点、新的知识技能、新的知识能力”,而是一种对已学知识的一种重新加工处理的能力,从已学的 知识上提炼出更精粹的东西来。这也正是学生在这方面的缺憾,需要教师的有效引导与分析。这更是学生的主要障碍。

二、目标的设定及重难点 1.目标的准确与完整

知识目标:

(1)能够有效回顾本章的重要基础知识;

(2)二次根式的计算与化简;

情感目标:

(1)对章节内容的总体把握,全面分析;

(2)体会对问题的解决办法的优化处理;

能力目标:

(1)提高学生善于处理问题的能力;

(2)培养学生构建知识体系,形成知识系统的能力; 2.重点、难点确立及依据

二次根式的计算与化简是新授时的重点,更也是复习课上的重点。前面的公式、运算法则等都是为了这些计算与化简服务的,学生真正体现所学的基础知识应就是在解决这些问题上。故此,本课教学内容的重点设定为:

二次根式的计算与化简;

伴随着重点内容的出现,学生的问题也得以体现。要熟练地解决二次根式的计算与化简问题,需要学生真正理解所要求的基础知识,并灵活的运用基础知识解决问题。继而重新回归到重点内容上。然而这些都是学生的困难之处。也就是说本课的重点内容就是难点内容。3.重、难点突破方法

本课内容的重点也就是难点,突破的方法都在于如何有效地理解二次根式的模型,以及如何运用基础的知识去解决较为复杂的问题。而这些都在基础的回顾上让学生得以重新的认识,所以,突破的方法之一就来源于学生对已学知识的掌握程度,另外,通过对比以前所学的知识可以让学生进行方法的探索以及能力的培养,这正是重难点突破的方法之二。

三、教法设计

自主复习基础知识(整理知识点)、复习测评→→合作探究→→达标训练→堂清检测

四.学法设计

1.学生学习本课知识应采取的方法

由于本课是复习课,更多的情况之下学生参与课堂的比例很大。所以,在课堂上,学生学生应积极参与课堂,通过对比新授与复习之间的不同,在课堂上形成新的认识,教师更是注重对学生系统分析问题的能力的培养。2.培养学生能力采用的方法

复习课是对学生所学知识的一个升华的阶段,在本节课上应着重关注前后学习方法,问题的思考方式的对比,让学生主动的讲,主动的暴露更多的问题才能让学生获得真正的技能,真正的提高学生的能力。

3.学生主题作用体现的方法与手段

合作交流(师生交流、生生交流)是解决本课内容所采取的一个必要环节,敢于质疑更是解决本课内容的关键所在。在整个教学中学生的主体地位得到进一步的确立,教师只是通过问题的形式以及组织课堂活动的形式将学生的思维联系在一起,而学生在课堂上无疑是一个真正的主宰者。

五、教学过程

①基础回顾与测评:将本章的基础知识都以一些常见的基础问题的形式展现,便于学生理解更便于学生对二次根式的模型的真正理解;

②整理知识点:一个问题整理一个知识点,让学生能对号入座,便于掌握与分析;

③合作探究:对本章中典型的计算与化简进行专门的探究讲解,突出重点,突破难点;

④达标训练:对所复习的知识点进行巩固训练,已达到进一步掌握; ⑤堂清检测:针对不同的学生,不同的问题进行不同的检测,以确定其对本章所学知识的掌握情况,达到实现面向全体教学的目标;

五、作业设计 1.作业设计目标

根据不同学生掌握新知的程度不同,对作业的完成也有不同的要求。为此,对于a类学生应能运用新知解决相关程度的问题(巩固提高第1、2、3、4、5题);而b类学生要求解决相关的基础性问题(巩固提高第1、2题),对与新知相关程度的问题应积极尝试; 2.难易梯度和针对性

学生学习新知掌握的程度不同,对新知进行训练的要求就不同。但是,作业的目的都应针对本课内容的教学,故本课作业应完成课后第1~5题。第1、2题是一个基础性的问题,学生大体上应能解决。而第3~5题是与本课教学相对应的相关程度的问题,a类的学生应能较好的解决,b类学生则要求积极的尝试。篇四:二次根式的加减说课稿

二次根式的加减说课稿

今天我说课的内容是义务教育课程标准试验教科书数学九年级上册,第二十

一章《二次根式》第三节《二次根式的加减》第一课时。下面我将从教材分析、教学方法、学法指导、教学程序、板书设计等五个方面进行陈述。一.说教材

1,教材所处的地位和作用

本节是在上节学习的化简二次根式的基础上,进一步学习二次根式的加减。在化简二次根式的同时,引导学生概括出同类二次根式的概念。类比整式的加减运算中的合并同类项,给出二次根式的加减运算法则,进而进行二次根式的加减混合运算。2,教学目标

知识与能力

1、了解同类二次根式的概念,掌握判断同类二次根式的方法。

2、使学生能正确合并同类二次根式,进行二次根式的加减运算,过程与方法

正确掌握合并同类二次根式的方法

情感、态度与价值观

在探究合并同类二次根式的方法过程中,发展合作意识和合情推理能力.教学准备 制作课件,提高学生的学习兴趣

教学重点 : 二次根式加减法则及其应用。

教学难点 : 法则的探索与理解。

二,教法与学法:由于初三学生的数学思维特征有具体逻辑思维逐步过渡到抽象逻辑思维,但仍有很大程度的经验性,而二次根式需要有一定的抽象思维能力。因此,本节课运用引导探究法,在教师引导下学生进行自主探究的教学方法。三,教学构思 :本节课是在二次根式的化简的基础上的进一步学习,重点是探索二次根式的加减运算法则。在设计本课时教案时,先复习二次根式的化简,并由此引出同类二次根式的定义,注意引导学生对同类二次根式和同类项、二次根式的加减的合并同类项进行比较学习。在理解、掌握和运用二次根式的加减法运算法则的学习过程中,逐步渗透类比、概括等数学思想,提高学生用数学方法

解决实际问题的能力。在学习过程中,采用小组学习方式,组间竞争,按各组表现评出最优小组,激发学生学习积极性和兴趣。

四、说教学过程

教师准备:制作课件、精选习题、学生分成十组

教学过程:

(一)温故知新

(1)什么最简二次根式?

(2)化简下列各数,(1)(3,学生活动:以小组为单位抢答。

师:按各组表现给小组计分。

设计意图:为同类二次根式的定义做铺垫。

(二)探索新知

师:提出问题:观察上面各数的结果,你发现他们有什么特点吗?小组讨论,抢答。

生回答:结果中的被开方数都是一样的。

师总结:同类二次根式 练习:下列各式中,哪些是同类二次根式? 6 师:你还会计算下面式子吗?

(1)2x?3x?(2)

生:计算并抢答。师:这是什么计算呢?

生:合并同类项。?_____吗?

生猜测:师:正确。并总结出同类二次根式可以像合并同类项那样进行合并。

4x?2y?2x?3y?______ 设计意图:让学生使用类比思想,总结出二次根式的加减运算。

(三)自主学习

独立完成例题的学习,小组讨论交流自己的收获。

(四)有效训练(比一比,谁计算的快)

计算:(1)(2)(3)(4(5(6 思考:二次根式的加减运算的一般步骤是什么?

学生:小组交流、总结

师点拨:先化简成最简二次根式,再把同类二次根式合并。设计意图:为学生提供演练机会,加强对二次根式加减运算的理解及掌握。

(五)拓展提升

1、若a,b

2、化简,求值。?a?。32,其中x? 2 设计意图:使学生熟练掌握二次根式的运算方法和技巧,综合运用新旧知识,使知识融会贯通。

(六)课堂小结(学生小组总结展示,师补充)1.几个二次根式化成最简二次根式后,如果它们的被开方式相同,那么,这几个二次根式称为同类二次根式。2.二次根式相加减,应先把各个二次根式化成最简二次根式,然后把同类二次根式分别合并。

3.同类二次根式可以像同类项那样进行合并。

设计意图:梳理本节课的主要知识点,让学生明确重难点。

(七)达标检测

(1)a b c d(2 是同类二次根式,则a的值为()a、0 b、1 c、d、(3)。

(4(5)化简求值(1?其中x?8,y?27 设计意图:检测学生对本节课知识的掌握程度,以确定下节课的教学内容及重点。

(八)布置作业

必做题:习题21.3 第1,2,3题

设计意图:课后巩固,加深学生对二次根式加减运算的掌握。

设计意图:教师能够及时了解学生进行二次根式加减运算的熟练性、准确性,便于调整教学安排。

五、板书设计

二次根式的加减

引例 例1 例2 巩固练习

法则 小结

举例 例3 作业

设计意图:如此设计板书内容明了、重点突出、思路清晰;能让学生更好的了解本节内容,系统理解掌握。篇五:二次根的概念与性质说课稿

《二次根的概念与性质》说课稿

一、说教材

1、教材的地位及作用 “二次根式”是《课程标准》“数与代数”的重要内容。本章是在前面几章实数的基础上,进一步研究二次根式的概念、性质,和运算。本章内容与已学内容“实数”“整式”“勾股定理”联系紧密,同时也是以后将要学习的“锐角三角函数”“一元二次方程”和“二次函数”等内容的重要基础。

第一节研究二次根式的概念和性质。它是学习本章的关键,它也是学习二次根式的化简和运算的依据。

2、教学目标

根据大纲的要求和教材结构内容分析,结合八年级学生的实际水平,考虑到学生已有的认知结

构心理特征,本节课可确定如下教学目标:

(1)

(2)

(3)

(4)知识技能:使学生理解并掌握二次根式的概念,掌握二次根式中被开方数的取值范围和二数学思考:使学生理解二次根式被开方数的取值范围的重要性 解决问题:培养学生根据条件处理问题的能力及分类讨论问题 情感态度:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,次根式的取值范围及简单计算。发展学生观察、分析、发现问题的能力,培养学生辩证唯物主义观点

3、教学重点难点

教学重点:

1、明确二次根式a≥0(a≥0)具有双重非负性,会确定被开方数中字母的取值范围。

2、会利用二次根式的性质做相关计算。

教学难点:公式(二、说教法

教学活动的本质是一种合作,一种交流。学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。依据学生的年龄特点和已有的知识基础,本节课注重加强知识间的纵向联系,拓展学生探索的空间,体现由具体到抽象的认识过程。为了为后续学习打下坚实的基础,例如在“锐角三角函数”一章中,会遇到很多实际问题,在解决实际问题的过程中,要遇到对二次根式进行条件约束等问题,本课适当加强练习,让学生养成联系和发展的观点学习数学的习惯。

三、说学法

新课程标准指出:学生是学习的主体。要让学生成为真正的主人,需要在数学教学的过程中,让老师引导学生自主思考、合作探究、共同总结,从而体现学生学习的主体地位。本节课主要采用自主学习,合作探究,引领提升的方式,启发式、讲练结合的方法展开教学。先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念;再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简的学习。通过对本节课的学习,使学生们的发散性思维得以启发,学生们的观察、分析、发现问题的能力得以锻炼,学生辩证唯物主义观点得以培养。

四、说教学手段

备课采用现代网络技术查找了大量有关这节课的教学设计、说课稿等,而且在湖南基础教育资源网上请求和咨询各在线名师进行交流。

教学使用多媒体与黑板板书结合,有条理,有逻辑性地展示问题的发现、分析研究、得出结论的过程,加深学生们的理解

五、说教学过程

? 活动一 温故知新 回顾思考

首先带领学生复习近平方根与算术平方根的使用,由几个实际问题(三个几何问题,一个物理问题)a)2=a(a≥0)的逆用

入手,设置问题情境,让学生感受到研究二次根式来源于生活又服务于生活。

思考:用带有根号的式子填空,看看写出的结果有什么特点?

(1)

(2)

(3)要做一个两条直角边的长分别为7cm和4cm的三角尺,斜边的长应为 cm(学生口答)面积为s的正方形的边长为(学生口答)要修建一个面积为6.28m的圆形喷水池,它的半径为 m(?取3.14)(学生举手回2 答)

(4)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下时的高度h(单位: 2m)满足关系h=5t.如果用含有h的式子表示t,则t=(学生举手回答,最快举手者回答)(目的:既可以巩固旧知识,又可以让学生有一个明确的思考方向,同时,还可以培养学生的观察能力,做到老师是课堂上的引导者,学生是学习的主人)? 活动二 探求新知 分析例题

学生发现复习题结果都是一些正数的算术平方根,教师引导学生用一个式子表示这些有共同特点的式 a?0)这一条件。在” 称为此基础上引出二次根式的定义:一般的, 二次根号.又请同学们思考:为什么一定要加上a 有平方根。?0这一条件?引导学生说出只有正数和零才有平方根,负数没

(目的:传授学生学习的方法:在于善于和以前学过的知识相联系、相结合,这便于对新知识的进行有层次的理解、记忆与运用)

继续请学生思考,二次根式可否简单而又笼统的理解为开算术平方根,为什么? 从而使学生得出一个认识:

a?0)表示非负数 a的算术平方根,a?0)也是非负数 ,它的平方等于a,有?0(a?0),(2)2?a?a? 0? 性质常用于化简二次根式,但不作甚解,让学生带着疑问去学习、研究,从而在接下来的引领教学中培养学生辩证唯物主义观,为学生在下面的学习过程中产生顿悟的喜悦感设下伏笔

(目的:让学生领会,学数学,是一个感性到理性的培养过程,最终目的并不是仅仅学习如何去运算式子、计算数字,而是重点通过学数学培养、锻炼我们的分析、联想能力、启发性思维和发散性思维)

从二次根式的基本性质:2?a?a?0?,引导学生提出预习时发现的问题:

从读法、意义、a的取值范围、外表、结果五个方面对它们进行区分:

负数a的算术平方根进行乘方”2?a?a?0 ?是“对非 ?a是“对任意数a的平方开算术平方根”;显然前后“a”所 2 代表的意义都不相同;“a”的取值范围:,中的“a”必须满足“?a?0?”a” 为任意数;运算结果:a 相同点:①都有平方和开平方运算;②运算结果都是非负数;③仅当a?0 时,? 0时,2 ?,a? 0时,无意义2??a.?.2 回顾所学过的式子的共同特点,发现它们都是用基本运算符号把数和表示数的字母连接起来的式子,例题 师一起总结,并请学生结合具体例子对这些结论进行分析;引导学生由具体到抽象,得出一般的结论,并发现开平方运算与平方运算的关系,培养学生由特殊到一般的思维方式,提高归纳、总结的能力。)例1.下列各式是否为二次根式?(1)22x?y m2?1;(2)a;(3)?n;(4)a?2;(5)

第(1)小题与学生一起分析;第(2)小题请学生分析;第(3)小题请学生认真思考后回答;(4)(5)两小题需要分情况讨论,请学生考虑清楚在回答.例2.当x为何值时,下列各式在实数范围内有意义?(1)x?3;(2)2?4x;(3)?5x3;(4)x?1(目的:通过对例题的共同探讨,让学生体会二次根式概念的初步应用。加深对二次根式定义的理解,并注重新旧知识间的联系,用转化的思想解决问题,总结出解题规律:求未知数的取值范围即转化为①被开方数大于等于0;②分母不为0列不等式或不等式组解决问题)? 练习 1.2.一个矩形的面积是18cm,它的边长之比为2:3,它的边长应为多少? 当a是怎样的实数时,下列各式在实数范围内有意义?

(1)3.4.已知y=计算 2活动三 接触新知 动手实践 a?1(2)2a?3 x?3-3?x,求x+y的值.5?2? 22??2? 学生练习1、2两小题是基础题,学生自己能够完成;

3、4题是灵活应用二次根式的取值范围才能解的题目,需要学生认真思考.(1、2两小题检查中等及以下学生对基础知识的掌握情况;

3、4题检查中等以上学生是否对二次根式的取值范围有更深刻的理解.)(目的:通过课堂练习,检查学生对基础知识的掌握情况,了解学生是否对二次根式的取值范围有

更深刻的理解,使学生进一步巩固知识,运用知识)? 活动四 归纳知识 总结收获 查问学生本节课有什么收获和体会/总结有何收获和经验教训(从知识、方法、规律和注意点等方面谈),教师引领提升。

如: 1.2.二次根式的定义及被开方数的取值范围;被开方数的取值范围在计算中经常作为隐含条件给出,注意合理应用.(目的:有助于培养学生的总结能力,并让学生总结经验教训有助于学生大胆的说出自己的错误避免今后再出现同样的失误)? 活动五 知识延伸 分层作业

基础练习:

1.下列各式是否为二次根式? x2?32; a; ?a2;m?7.2.当a是怎样的实数时,下列各式在实数范围内有意义?(1)3a;(2)?a?1;(3)6?2a2.选作练习:

一、选择题

1.下列式子中,是二次根式的是()a.

.x 2.下列式子中,不是二次根式的是()a .1x 3.已知一个正方形的面积是5,那么它的边长是()a.5 b .15 d.以上皆不对

二、填空题

1.形如________的式子叫做二次根式. 2.面积为a的正方形的边长为________. 3.负数________平方根.

三、综合提高题

1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,面边长应是多少?

2.当x +x2 在实数范围内有意义?

底面应做成正方形,试问底? 4.x有()个.

a.0 b.1 c.2 d.无数 5.已知a、b 6.计算 =b+4,求a、b的值.

?3? ???5?22 0.012-22(目的:分层作业,分层训练学生对知识的理解与运用;大的作业量,小的要求,素质教育,让学生拥有多元化的选择和更多的思考与讨论的空间)

二次根式说课稿 篇10

在二次根式这一章的学习中,重点是熟练掌握二次根式的运算,教学的关键是理解二次根式的性质,分享了人教版二次根式的说课稿,一起来看看吧!

一、说教学内容与学情分析

1.本课在教材、新课标中的地位与作用

本课内容是二次根式章节的复习课,是学生在学完新人教版八年级教材下册第十六章后的一个总结复习。二次根式是初中数学知识体系与结构中一个不可或缺的部分,是中考直接考查的一个重点内容。本课复习内容的教学将让学习更为系统地认识二次根式,并在学习新知的基础上得到一个升华。同时也是为了学生能够在下一张勾股定理以及九年级的解直角三角形学习中打下一些有效的基础。

关于二次根式在《数学课程标准》中提出要求:

1.了解二次根式的概念及其加、减、乘、除运算法则;

2.会用它们进行有关实数的简单四则运算(不要求分母有理化);

在本章内容新授过程中,教师更多的关注了学生对概念及运算法则的讲解,对方法、技巧、能力等各方面并没有对学生作出更高的要求,同时学生本身在学习新课知识时,也是一种模糊的感觉。对课程标准提出的第2点:会用它们进行有关实数的简单四则运算并不能很有效的完成。而本节复习课的教学将给学生一个巩固提高的机会,让大多数学生能加深对二次根式的运算的理解,同时更是为学生掌握更多的学习方法、学习技巧,提高学生的能力提供机会。彻底地贯彻课程标准所提出的要求,完成九年级学生应完成的任务。

2.本课知识点与前后知识点的联系

本课内容是综合性复习,所讲知识点学生基本都熟悉,只不过是没有真正的理解透彻,甚至有些学生可能都已经有部分渐渐淡忘。本节内容的教学其实从本质上讲就是为学生理清知识点,建立一个完整的知识体系与结构。把已学知识系统、全面地呈现在学生的面前,同时也是为了让学生能够对二次根式的理解与运算真正落实到位作出努力。

其实,本课内容的教学不单单是为了复习巩固,更重要的是让学生对本章的知识在初中数学教材中明确地位与作用,让学生感受本章知识的重要性,为即将学习后面的知识做好铺垫工作。

3.学生已有的知识基础

由于新课内容结束离综合性复习时间较长,可以说大多数学生对本章的知识并不是非常熟悉,但学生已具备的知识基础从理论上讲应该是完全具备的,只不过需要一个回顾的过程。同时,随着知识面的拓广以及一些章节中对二次根式的应用,逐步让学生对二次根式这一章的内容也有了更多的认识。在复习时,学生应该说还是很易于接受的。

4.学生学习新知的障碍

在学生已有的知识基础上,本节课的教学其实更主要的是经历回顾、理解、巩固的过程。本节教学内容的新知并不是真正的“新的知识点、新的知识技能、新的知识能力”,而是一种对已学知识的一种重新加工处理的能力,从已学的 知识上提炼出更精粹的东西来。这也正是学生在这方面的缺憾,需要教师的有效引导与分析。这更是学生的主要障碍。

二、说目标的设定及重难点

1.目标的准确与完整

知识目标:

(1)能够有效回顾本章的重要基础知识;

(2)二次根式的计算与化简;

情感目标:

(1)对章节内容的总体把握,全面分析;

(2)体会对问题的解决办法的优化处理;

能力目标:

(1)提高学生善于处理问题的能力;

(2)培养学生构建知识体系,形成知识系统的能力;

2.重点、难点确立及依据

二次根式的计算与化简是新授时的重点,更也是复习课上的重点。前面的公式、运算法则等都是为了这些计算与化简服务的,学生真正体现所学的基础知识应就是在解决这些问题上。故此,本课教学内容的重点设定为:

二次根式的计算与化简;

伴随着重点内容的出现,学生的问题也得以体现。要熟练地解决二次根式的`计算与化简问题,需要学生真正理解所要求的基础知识,并灵活的运用基础知识解决问题。继而重新回归到重点内容上。然而这些都是学生的困难之处。也就是说本课的重点内容就是难点内容。

3.重、难点突破方法

本课内容的重点也就是难点,突破的方法都在于如何有效地理解二次根式的模型,以及如何运用基础的知识去解决较为复杂的问题。而这些都在基础的回顾上让学生得以重新的认识,所以,突破的方法之一就来源于学生对已学知识的掌握程度,另外,通过对比以前所学的知识可以让学生进行方法的探索以及能力的培养,这正是重难点突破的方法之二。

三、说教法设计

自主复习基础知识(整理知识点)、复习测评→→合作探究→→达标训练→堂清检测

四.说学法设计

1.学生学习本课知识应采取的方法

由于本课是复习课,更多的情况之下学生参与课堂的比例很大。所以,在课堂上,学生学生应积极参与课堂,通过对比新授与复习之间的不同,在课堂上形成新的认识,教师更是注重对学生系统分析问题的能力的培养。

2.培养学生能力采用的方法

复习课是对学生所学知识的一个升华的阶段,在本节课上应着重关注前后学习方法,问题的思考方式的对比,让学生主动的讲,主动的暴露更多的问题才能让学生获得真正的技能,真正的提高学生的能力。

3.学生主题作用体现的方法与手段

合作交流(师生交流、生生交流)是解决本课内容所采取的一个必要环节,敢于质疑更是解决本课内容的关键所在。在整个教学中学生的主体地位得到进一步的确立,教师只是通过问题的形式以及组织课堂活动的形式将学生的思维联系在一起,而学生在课堂上无疑是一个真正的主宰者。

五、说教学过程

①基础回顾与测评:将本章的基础知识都以一些常见的基础问题的形式展现,便于学生理解更便于学生对二次根式的模型的真正理解;

②整理知识点:一个问题整理一个知识点,让学生能对号入座,便于掌握与分析;

③合作探究:对本章中典型的计算与化简进行专门的探究讲解,突出重点,突破难点;

④达标训练:对所复习的知识点进行巩固训练,已达到进一步掌握;

⑤堂清检测:针对不同的学生,不同的问题进行不同的检测,以确定其对本章所学知识的掌握情况,达到实现面向全体教学的目标;

五、说作业设计

1.作业设计目标

根据不同学生掌握新知的程度不同,对作业的完成也有不同的要求。为此,对于A类学生应能运用新知解决相关程度的问题(巩固提高第1、2、3、4、5题);而B类学生要求解决相关的基础性问题(巩固提高第1、2题),对与新知相关程度的问题应积极尝试;

2.难易梯度和针对性

上一篇:学生日常管理方法的总结下一篇:辅导员队伍建设现状