二次根式的乘法说课(精选14篇)
敬的各位评委老师:
大家好!
我是中学的数学老师,很高兴能有机会参加这次活动,并得到您们的指导。
今天我说课的题目是《二次根式的乘法》,选义务教育课程标准实验教材九年级上册第二十一章第二节。
下面我将根据自己编写的教案,从教学目标的确定,教学重点、难点的分析,教学方法与手段的选择及教学过程的设计等方面做一个说明。
一、教学目标
1.使学生能够利用积的算术平方根的性质进行二次根式的化简与运算.
2.会进行简单的二次根式的乘法运算.
3.使学生能联系几何课中学习的勾股定理解决实际问题.
二、教学重点和难点
1.重点:会利用积的算术平方根的性质化简二次根式.
2.难点:二次根式的乘法与积的算术平方根的关系及应用.
重点难点分析:
本节的教学重点是利用积的算术平方根的性质进行二次根式的计算和化简.积的算术平方根的性质是本节的中心内容,化简和运算都是围绕其进行的,而运用此性质计算化简又是二次根式的化简和混合运算的基础.二次根式的计算和化简通常与如勾股定理等几何方面的知识综合在一起.本节难点是二次根式的乘法与积的算术平方根的关系及应用.积的算术平方根在应用时既要强调这部分题目中的字母为正数,但又要注意防止学生产生字母只表示正数的片面认识.要让学生认识到积的算术平方根性质与根式的乘法公式是互为逆运算的关系。综合应用性质或乘法公式时要注意题目中的条件一定要满足.三、教学方法
从特殊到一般总结归纳的方法,类比的方法,讲授与练习结合法.
1.由于性质、法则和关系式较集中,在二次根式的计算、化简和应用中又相互交错,综合运用,因此要使学生在认识过程中脉络清楚,条理分明,在教学时就一定要逐步有序的展开.在讲解二次根式的乘法时可以结合积的算术平方根的性质,让学生把握两者的关系。
2.积的算术平方根的性质和及比较大小等内容都可以通过从特殊到一般的归纳方法,让学生通过计算一组具体的式子,引导他们做出一般的结论。由于归纳是通过对一些个别的、特殊的例子的研究,从表象到本质,进而猜想出一般的结论,这种思维过程对于初中学生认识、研究和发现事物的规律有着重要的作用,所以在教学中对于培养的思维品质有着重要的作用。
四、教学手段利用投影仪.
五、教学过程
(一)引入新课 观察例子得到结果
类似地可以得到:
由上一节知道一般地,有=(a,b)
通过上面的例子,大家会发现 =(a,b)也成立
(二)新课
积的算术平方根.
由前面所举特殊的例子,引导学生总结出:一般地,有(a≥0,b≥0).积的算术平方根,等于积中各因式的算术平方根的积.
要注意a≥0、b≥0的条件,因为只有a、b都是非负数公式才能成立,这里要启发学生为什么必须a≥0、b≥0.在本章中,如果没有特别说明,所有字母都表示正数,下面启发学生从运算顺序看,等号左边是将非负数a、b先做乘法求积,再开方求积的算术平方根,等号右边是先分别求a、b的两因数的算术平方根,然后再求两个算术平方根的积.根据这个性质可以对二次根式进行恒等变形。化简,使被开方数不含完全平方的因数(或因式):1、2、3、说明:
1、当所得二次根式的被开方数的因数(式)中,有一些幂的指数不小于2,即含有完全平方的因式(数),我们就可利用积的算术平方根的性质,并用=a
(a)来化简二次根式。
2、(a≥0,b≥0)可以推广为(a≥0,b≥0,c≥0)
化简二次根式的步骤
1、将被开方数尽可能分解出平方数;
2、应用=(a,b)
3、将平方项利用=化简
小结:
1、积的算术平方根与二次根式的乘法的互逆性;
首先我们回顾一下二次根式的概念, 课本上是这样定义的: 式子叫作二次根式, 二次根式的性质有以下几条, 包括平方、开方以及乘除法计算. 用式子表示为:
一、常考a1/2 ( a≥0) 中 a 的范围
这是二次根式最基本的一个概念, 也是非常重要的一个概念, 在考试中常常会出现, 覆盖范围比较广, 二次根式中的被开方数只要不是一个具体的数, 都应该考虑到它的范围, 牢记被开方数a是一个非负数.
例1已知 ( a +1) 2与互为相反数, 求a2+b2的值.
二、当a1/2存在时, 牢记 a≥0
当题目中出现槡a时, 也就是指槡a存在, 是有意义的, 那么就可以得出隐含的条件a≥0, 通常我们就是要利用这个隐含的条件来解题.
例2化简
分析这类化简其实考查的就是二次根式的性质如 ( a≥0) , 特别是的运用, 该性质与去绝对值号的原理是一样的. 化简的过程中要注意保持化简后的值的非负性, 如果a是两个数的差, 那么就要考虑到这两个数的大小关系.
三、正确理解 -a, 牢记-a1/2存在, 且 a≤0
很多学生受定式思维的影响, 总是容易把带“- ”号的数当成是负数. 形如-a1/2, 直观感觉它是错误的, 但当a≤0时, -a1/2是存在的.
例3把式子根号外的因式移到根号内, 并化简.
分析把因式移到根号内或者把因式移到根号外, 关键就是要保持式子的大小不变, 特别是符号不变, 在内移和外移时要先分析和判断式子的符号. 如上式中, 可以先从根号内入手判断a, b的大小以及a -b的符号.
四、如果 (-a2) 1/2存在, 那么 a =0
二次根式的性质运用是非常灵活的, 就像是 (-a2) 1/2存在, 则a =0, 这个性质也是根据a1/2 ( a≥0) 推导出来的. 在平时的学习中, 并不需要去死记, 而是把最基本的概念a1/2 ( a≥0) 记牢并理解好就可以了, 更重要的是学会用正确的方法去分析和推导, 那么遇到不同的形式也能运用自如.
例4计算的值.
五、若a1/2和b1/2都存在, 则 a≥0, b≥0
在解题中要留意一个参数同时存在于不同的根号中, 那么这个参数的取值必须是在这几个根号中的范围的交集. 也就是首先要保证每个根号有意义, 再确定参数的取值.
例5已知求m的值.
分析式子中含有四个根号, 首先要保证每个根号都有意义, 先从等号右边较简单的入手, 就可以得出a与b之间的关系, 通过关系的运用来求得m的值.
总的来说, 二次根式的性质的运用是相当灵活的, 学生们在学习的过程中千万不要死记硬背, 这样很容易混淆, 也很难记清楚, 而是要理解好每一个性质, 把最基本的几个性质记熟, 在运用的时候就能够做到举一反三, 灵活变换.
参考文献
[1]刘永生.挖掘隐含条件解二次根式问题.数学大世界:初中版, 2013 (11) .
[2]李洪生.二次根式考点解析.数学大世界:初中版, 2013 (10) .
一、利用二次根式的定义
例1 已知x、y为实数,且满足■-(y-1)■=0,则x2013-y2013=___。
分析 由二次根式的定义,得■≥0,■≥0,则有y-1≥0。
又1-y≥0,则可以求出y的值,从而x的值也可以求出。
解 已知等式即为■=(y-1)■。
因为■≥0,■≥0,
所以y-1≥0,即1-y≤0。
因为1-y≥0,所以1-y=0,即y=1。
把y=1代入已知等式,得■=0,解得x=-1。
则原式=(-1)2013-12013=-2。
点评 若■有意义,则■中隐含着两个非负数:一个是被开方数a≥0,另一个是■≥0。
二、利用倒数关系
例2 已知a=2+■,b=2-■,试求■-■的值。
分析 由ab=1,得a和b互为倒数,那么■=a,■=b。
解 由a=2+■,b=2-■,得ab=1,a+b=4,a-b=2■。
则原式=a·■-b·■=a2-b2=(a+b)(a-b)=8■。
点评 如果ab=1,那么a和b互为倒数,即有■=a,■=b。解题时我们要注意利用这一性质。
三、利用平方法
例3 若m=■,则m5-2m4-2013m3的值是______。
分析 因为m5-2m4-2013m3=m3(m2-2m-2013),要求原式的值,关键在于确定m3及m2-2m-2013的值。
解 因为m=■=■+1。
所以m-1=■,(m-1)2=2014。
所以m2-2m-2013=0。
所以原式=m3(m2-2m-2013)=0。
点评 对于m=■+b的多项式求值问题,应先将这个条件变形为
m-b=■,然后两边平方,从而解决问题。
四、利用非负数和为零
例4 若■+(b-2)2=0,则a2+■-b=______。
分析 从已知等式出发,看看能否确定a2+■的值及b的值。
解 因为■≥0,(b-2)2≥0,所以a2-5a+1=0,b-2=0。
由a2-5a+1=0,得a2+1=5a,a+■=5;由b-2=0,得b=2。
则原式=a+■2-2a·■-b=21。
点评 常见的非负数有:实数的绝对值,实数的平方,非负实数的算术平方根。若其中任意两个或三个的和等于0,则每一个都等于0。
五、利用实数相等的性质
例5 已知a、b为有理数,m、n分别表示5-■的整数部分和小数部分,且amn+bn2=1,则2a-b=______。
分析 先确定m、n的值,再将其代入已知等式中,可知左边有理数部分为1,无理数部分为0。由此可以确定a、b的值。
解 由2<5-■<3,得m=2,n=(5-■)-2=3-■。
因为amn+bn2=1,
所以23-■a+3-■2b=1。
所以(6a+16b)-(2a+6b)■=1。
所以6a+16b=1,2a+6b=0。
所以a=■,b=-■。
则2a-b=2×■-(-■)=■。
点评 任意一个实数都可写成m+n■的形式。其中m是它的有理数部分,n■是它的无理数部分。如果两个实数相等,那么它们的有理数部分和无理数部分必然分别相等。
六、利用配方法
例6 如果a-b=■+■,b-c=■-■,那么2(a2+b2+c2-ab-bc-ca)=______。
分析 根据已知两等式不可能单独确定a、b、c的值,只能确定a-b、b-c、a-c的值。因此,应将原式变形成关于a-b、b-c、a-c的式子。
解 已知两等式即为a=■+■+b,c=b-■+■,
所以a-c=2■。
则原式=(a2-2ab+b2)+(b2-2bc+c2)+(a2-2ca+c2)
=(a-b)2+(b-c)2+(a-c)2
=(■+■)2+(■-■)2+(2■)2=34。
点评 配方的实质是逆向应用完全平方公式,将形如a2±2ab+b2的式子化为形如(a±b)2的形式。
练习
1.计算2■-6■+■的结果是( )
A.3■-2■B.5-■ C.5-■ D.2■
2.如果■=1-2a,则( )
A.a<■ B.a≤■ C.a>■ D.a≥■
3.已知6-3m+(n-5)2=3m-6-■,则m-n=( )
A.2 B.1 C.-1 D.-2
4.把二次根式a■化简后,结果正确的是( )
A.■ B.-■ C.-■ D.■
5.下列各式计算正确的是( )
A.■+■=■ B.2+■=2■
C.3■-■=2■ D.■=■-■
6.估计■×■+■的运算结果在( )
A.1到2之间 B.2到3之间
C.3到4之间 D.4到5之间
7.若a<1,化简■-1等于( )
A.a-2 B.2-a C.a D.-a
8.已知实数a满足2011-a+■=a,则a-20112的值是( )
A.2011 B.2010 C.2012 D.2009
练习参考答案
一、教材
“二次根式”是《课程标准》“数与代数”的重要内容。本章是在前面所学知识的基础上,进一步研究二次根式的概念,性质,和运算。本章内容与已学内容“实数”“整式”“勾股定理”联系紧密,同时也是以后将要学习的“锐角三角函数”“一元二次方程”和“二次函数”等内容的重要基础。本节课研究二次根式的概念和性质。它是学习本章的关键,也是学习二次根式的化简和运算的依据。
教学目标
根据数学课程标准中关于“二次根式及其性质”的教学要求,结合教材内容以及学生的实际情况我确定了本节课的三维教学目标。
知识与技能
1、了解二次根式的概念。
2、了解二次根式的基本性质,经历观察、比较、总结二次根式的基本性质的过程,发展学生的归纳概括能力。
过程与方法
通过对二次根式的概念和性质的探究,提高数学探究能力和归纳表达能力。
情感态度与价值观
激励全体学生参与自主学习,培养他们积极探索,勇于创新的精神,养成敢想、敢说、敢做的主动学习的习惯。
教学重点:二次根式的概念和基本性质 教学难点:二次根式基本性质的灵活运用
二、教法
为了更好的突出重点、突破难点并遵循“以学生为主体,教师为主导”的教学原则,我采用让学生自主学习,合作探究,引领提升的方式展开教学。依据学生已有的知识基础,本节课注重加强知识间的纵向联系,拓展学生探索的空间,体现由具体到抽象的认识过程,为后续学习打下坚实的基础。
三、学法
本课由于概念抽象,知识难懂,易使学生感到枯燥无味或产生畏难情绪。我根据学生由浅入深的认识规律和教学的启发性、因材施教等教学原则,以引导法为主,辅以讨论法等,让学生全面、全程的参与教学的每一个环节,充分调动学生学习的积极性,总结二次根式的基本性质。
四、教学过程
为了实现教学目标,我把本节课的教学分为以下几个环节:下面我将对每个环节进行说明。
一、复习提问
以旧引新
问题1:a表示什么?a需要满足什么条件?
问题2:算术平方根的定义是什么?定义里的关键信息是什么?
因为本节课的内容是建立在算术平方根基础之上的,而算术平方根并不是上节课的内容,所以以这两个问题作为开始,为本节课的学习做好知识上的铺垫,同时,使学生对本节课的内容有熟悉感。
二、构建新知
(一)二次根式概念的讲解
一般地,式子a(a0)叫做二次根式。这样一个简单的定义告诉了我们什么呢?
以这样一个问题引起学生对定义的深层次的思考,并引导学生从以下几个方面对该定义进行剖析:
1.二次根式一定含有“二次根式;
2.被开方数a可以是数也可以是代数式,且a必须为非负数,即a0;
3.二次根式a(a0)是a的算术平方根,即a0(a0)
为了更好的理解新知,我通过练习来加强学生对于二次根式概念的理解。
巩固练习:下列各式哪些是二次根式?
⑴ 1
5⑵7
⑶x22x
1⑷3x(x>0)在学生练习之后,教师提问:通过这个练习,你能总结一下如何判断一个式子是否为二次根式吗?
通过回答这个问题,巩固对二次根式概念的理解,同时培养学生的总结能力,并帮助学生学会如何对习题进行方法的反思。
在明确二次根式的概念之后,提出在实数范围内,由于负数没有平方根,所以a(a0)没有意义,也就是说,a中的a只能表示大于或等于零的实数,即若a是二次根式,则一定有a0,或若a有意义,说明a0。
”,它是一个形态定义,如4也是例1:实数x在什么范围内取值时,下列各式表示二次根式? 2x1
通过例1使学生巩固对被开方数的非负性的认识,并使学生学会确定被开方数中字母的取值范围。两个题目的设计兼顾了一元一次不等式的基本解法,为以后深入研究被开方数中字母的取值范围做好准备。由于本节课知识点较多,因此在本节课中不再扩充到较为复杂的情况。
活动一:交流与合作(各小组合作交流)
甲:在下面这些代数式中选择构造一个二次根式 乙:求出这个二次根式中字母的取值范围 a1、3、-2、2a
1、a1、a
2通过上面的活动使学生更好的吸收二次根式的概念,同时培养交流合作的意识。
(三)应用新知
为加深学生对二次根式双重非负性中a0(a0)的理解,我设计了例2。
例2 若x3y50,求xy的值。
同时通过对例2的分析,使学生明确a0(a0)的应用,并体会与旧知识的联系,感受数学的整体性,提高学生解决问题的能力。
(二)二次根式性质的研究
活动二:让学生利用计算器计算
2、3,也可以让学
22生自己选数,并让学生交流计算结果及发现的现象,并猜想a32________(a0)。
同时要求学生利用所学过的知识来解释为什么222
2、3以及a2a(a0),教师可以做适当地引导,并得出性质a2a(a0)
语言表述为:非负数的算术平方根的平方,等于这个非负数。通过活动二使学生发现二次根式的性质,体验探索的过程,从而形成自己对这一数学知识的理解,培养学生归纳总结的能力。
再通过例3的练习来巩固二次根式的性质。例3:计算
通过例3,使学生学会运用公式
四、达标检测
这一环节是内化知识,训练思维、培养能力、形成技能的重要环节,因而我设计的练习题在注重基本练习的前提下,首先在形式上注意新颖多样、采取填空、选择、笔算练习等形式。其次在内容上注意采取秩序渐进的原则,由易到难,这样即符合学生的认识特点,又能兼顾大多数学生。
(五)、反思提高 这是作为新课必要的一个环节,结合板书,让学生说说本课学到的知识,并说出是怎样学到的,通过学生自己总结和评价,既加深了学生对新知识的理解和消化,又让学生体验到学习数学的价值和兴趣。
(六)、布置作业
这一环节我设计了分层作业,分为必做题和选做题,分别面向不同程度的学生,使所有学生都能有所收获。
(七)板书设计
a2a(a0)。板书设计是教学设计的画龙点睛之笔,这是我这节课的板书设计,呈现了这节课的教学重点。
二次根式和它的的性质(1)一、二次根式的概念 例1: 例3: 形如的式子叫做二次根式 二、二次根式的性质 1.(a)是一个非负数
2.()2=a(a)我的说课完毕,谢谢大家!
学案设计:原先设想在初三结束前完成二次根式一章,由于历史生物的结业考试,二次根式的加减实在是讲不完,只好把乘除讲完。时间赶到二次根式除法,于是,在学案的设计上,从处理方式与环节上,都与二次根式乘法相类似,但是比乘法所涉及的数学思想、数学思维力度更高,首先学习过程中用到类比的思想,与乘法类比,提高了学生的接受度,思维更加的顺畅,在本节中最简二次根式的概念的两个条件分别分散到乘法和除法两节中,最后想概括出这一概念,还是因为课堂效率不高没有能够概括出。
其次,分母有理化教材虽然删掉,但是用所学过的知识,学生经过思考,头脑有些灵活性的话,是可以自己想出办法解决的,尤其是对于分母是整个根号的这种情况,因此在本节课的最后加上了把3中分母的根号化掉,事实上在用公式计算时,由于没有领着学生对公式进行再认识,学生先用乘法化简,出现了类似的结果,学生经过自己动脑思考会想出不同的办法解决这个问题的。
展示的范围与效果:全员展示,基本性的题目,公式的运用,主要是5、6号同学,虽然他们都各自出现不同的问题,但是通过展示能够正确的利用公式,有的六号非常顺利的解决问题,有的出现了问题,但能够说出自己的根据,有的根本不会,通过展示指导能够得到提高,5号同学展示的难度相对提高,由于学习能力较6号强,都顺利的完成任务,并总结出方法,对于难度较大的题目,找出不同解决方法进行展示,让学生从不同的角度进行问题的解决,数学思想方法的展示,主要的是学习比较灵活的学生,他们能够根据自己对知识理解想出不同的方法,并根据自己在解决问题中的关键点或难点及时的提问或提示,基本上每个小组的1号同学都得到展示,在展示的过程中对于其他同学是一个学习提高的过程,全班展示率达到50%,在展示的过程中提高了学习的效率和积极性。
听了赵老师的一节数学课,这节课赵老师安排的是一节学生的练习课,课上,学生一边练习,我一边观察学生完成作业的情况,并与部分学生交流了解题方法。课后与赵老师交流的大致内容如下。
一、解题方法要逐步训练到学生达到自动化的程度。本节课是关于二次根式的混合运算,其中所用的到新知识就是关于化简二次根式,如学生首先要会把 能化成 ,在观察学生作业时,发现还有部分学生对这样的化简不熟练,还有一个学生,算到了 这一步时,眼睛盯着这个式子看了约两分钟的时间,无法往下进行了。
其实在计算的过程中,我们是先学生理论依据,然后由理论依据到具体的方法,最后用方法去计算每一道题。如上面的情况,先讲了开方的性质、意义等,这就了根式化简提供了理论依据。然后就是进行方法训练,在训练过程中,应老师先示范方法,学生再练习,发现学生还不熟练,则老师应再示范,学生再练习。如要让学生学会把 化成 ,教师示范了 的化简后,便让学生化简 、等,发现还有学生不熟练,示范后,学生再练习。直到学生熟练为止,这时就应侧重于方法,不必强调每一步的理论依据。
二、关于把 化成 的方法的探讨。在学生作业过程中,发现有部分学生在把 化成 总是无法从a中找到b2,因为在这个化简中,首先就要把a分解成b2×c的形式,找不到b2下面化简就无法进行。针对我们所化简的b一般都在10以内,便对一组最后一个学生做了如下指导。先记住2到9的.平方数,即4、9、16、25、36、49、64、81(当时我是让他把这些对应的平方数写在纸上)。然后用 中的a去除这些平方数,从小到大,一个一个来,找到能整除的那一个。(这里去除与a的一半最接近的小的平方数,可保证一次化简后更是最简的)我给他示范了一个化简 先用8去除这些平方数,除以4就能整除了,这样 ,后来他用这种方法化简了 化对了,我再让他化简 ,他化成了 ,我一方面让他观察这是不是最简了,另一方面,把上面括号中的方法告诉他了。这些方法对于我们教师来说,是非常简单的,等学生熟练后,这一步用的也是非常少的,但学生刚开始时,当他找不到b2时,用这种方法是可以的,我们就在举一反三的示范后让学生练习,直到他们能把一些常用的记住为止。
一、挖掘隐含条件
隐含条件是指没有明文表述出来,但是根据已有的明文表述可以推断出来的条件,或者是没有明文表述,但是该条件是一个常规或者真理.
例1已知,求xy的值.
【解析】本题是已知一个方程含有两个未知数,一般情况下无法解出x,y,只有利用已知的式子有意义的隐含条件是被开方数为非负数.,再将x的值代入原式求出y=-2,∴.
例2已知实数x,y,m满足,且y为负数,则m的取值范围是().
【解析】本题的隐含条件是二次根式和绝对值的非负性,并且几个非负数的和为0时,这几个非负数都为0.根据非负数的性质列出方程(组)求出x,y的值,然后根据y是负数即可得到一个关于m的不等式,从而求得m的范围.
解:根据题意,结合非负数的性质,得,|3x+y+m|=0,
解得则6-m<0,解得:m>6.
【答案】A.
二、转化思想
转化思想就是把未知解的问题转化到在已有知识范围内可解的问题的一种重要的思想方法.通过不断的转化,化复杂为简单,化不熟悉为熟悉,化不规范为规范,或转化成可套用某一模式来解决.数学的解题过程,就是从未知向已知、从复杂到简单的化归转换过程.
二次根式中常用以下两种转化方法:
1. 确定二次根式中字母的取值范围,可用不等式或不等式组解决问题.
例3已知在实数范围内有意义,求x的取值范围.
【解析】本题要考虑两个方面:一是对于二次根式来说被开方数x-1≥0,二是分母x-2≠0,所以得不等式组解得x≥1且x≠2.
2. 利用二次根式的性质或同类二次根式、最简二次根式的有关知识将有关二次根式的问题转化为方程或方程组来解决.
例4已知a,b是有理数,,求a,b的值.
【解析】本题要将二次根式进行化简,根据同类二次根式的系数相等就可以得到方程组.
3. 将某些数学问题转化为逆用二次根式的有关性质或运算公式.
例5在实数范围内分解因式:x2-6.
【解析】本题需要将二次根式的性质(a≥0)逆用为:
当a≥0时,.
三、整体思想
整体思想是从问题的整体性质出发,突出对问题的整体结构的分析和改造,发现问题的整体结构特征,把某些式子或图形看成一个整体,把握它们之间的关联,进行有目的、有意识地整体处理.整体代入、整体运算、整体设元、几何中的补形等都是整体思想方法在解数学问题中的具体运用.
例6已知,求(a-1)(b+1)的值.
【解析】利用乘法法则,并将a-b和ab作为整体得到.
三、分类讨论思想
当一个问题因为某种量或图形的情况不同而有可能引起问题的结果不同时,需要对这个量或图形的各种情况进行分类讨论.分类讨论要做到不重复、不遗漏.
例7化简
四、数形结合思想
数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,由数思形,以形想数,做好数形转化.数形结合有助于找到解答思路,并使解答简捷.
我们可以利用数形结合将无理数用数轴上的点表示.
例8在数轴上作出表示的点.
【解析】只需要画一个直角边分别为2和1的直角三角形,根据勾股定理可求出斜边为,再用圆规在数轴的负半轴上画出表示的点A.
化简:-a.
原式=a-a·=(a-1).
造成上述错解的原因是对二次根式的概念理解不清,忽视了-a3>0这一隐含条件,即a<0,从而开方运算错误. 大家都知道,=a=a(a≥0),-a(a<0), 由于与均为算术平方根,所以应有>0且>0,但错解中的a与·均小于0.
原式=a-a·=-a-a·=-a·+=(1-a).
2. 忽视隐含条件
已知a+b=-2,ab=,求+的值.
原式=+==-2.
造成上述错解的原因在于忽视了隐含条件. 由a+b=-2,ab=可知a<0,b<0,因而上述中的+=+是不成立的.
原式=+=+=+=-=2.
3. 忽视了对字母的讨论
分母有理化.
原式==.
造成上述错解的原因在于忽视了对字母a的讨论. 当a=0时,1-=0,此时的分母为0,并且结果中的分母也为0,此时分式无意义.
(1)当a=0时,原式=.
(2)当a≠0时,1-≠0,此时原式=.
4. 忽视特殊情况
分母有理化.
原式=
==-.
上述求解过程看似无懈可击,其实是错误的. 造成上述错解的原因是忽视了特殊情况x=y>0的情况,此时上述变形过程中的分式无意义.
原式=
==-.
5. 误用定义
已知与是同类二次根式,求m的值.
由条件知与是同类二次根式,所以2m=4m+4. 故m=-2.
若m=-2,则2m= -4<0,与二次根式的定义矛盾,因此上述答案是错误的. 其原因是忽视了并非最简形式,应将其化成2,然后利用同类二次根式的性质求m的值.
因为=2,且2与是同类二次根式,所以有=,两边平方得2m=m+1,解得m=1.
代数式用运算符号把数和表示数的字母连接起来的式子叫代数式①式子中不能出现“=,≠,≥,≤,<,>”;②单个的数字或单个的字母也是代数式
5.5(解析:这类题保证被开方数是最小的完全平方数即可得出结论.20=22×5,所以正整数的最小值为5.)
6.(1)(x+)(x-) (2)n(n+)2(n-)2(解析:关键是逆用()2=a(a≥0)将3变成()2.(1)x2-3=(x+)(x-).(2)n5-6n3+9n=n(n4-6n2+9)=n(n2-3)2=n(n+)2(n-)2.)
7.解:(1) . (2)宽:3 ;长:5 .
8.解:(1) =. (2)(3)2=32×()2=18. (3)=(-2)2×=. (4)-=-=-3π. (5) = =.
9.解:原式=-=-.∵x=6,∴x+1>0,x-8<0.∴原式=x+1-=x+1+x-8=2x-7=12-7=5.
10.解析:在利用=|a|=化简二次根式时,当根号内的因式移到根号外面时,一定要注意原来根号里面的符号,这也是化简时最容易出错的地方.
解:乙的解答是错误的.因为当a=时,=5,a-<0,所以 ≠a-,而应是 =-a.
本节课通过“观察——归纳——运用”的模式,让学生对知识的形成与掌握变得简单起来,将一个一个知识点落实到位,适当增加了拓展性的练习,层层递进,使不同的学生得到了不同的发展和提高.
在探究二次根式的性质时,通过“提问——追问——讨论”的形式展开,保证了活动有一定的针对性,但是学生发挥主体作用不够.
在探究完成二次根式的性质1后,总结学习方法,再放手让学生自主探究二次根式的性质2.既可以提高学习效率,又可以培养学生自学能力.
练习(教材第4页)
1.解:(1)()2=3. (2)(3)2=32×()2=9×2=18.
2.解:(1)=0.3. (2) =. (3)-=-π. (4)=10-1=.
习题16.1(教材第5页)
1.解:(1)欲使有意义,则必有a+2≥0,∴a≥-2,∴当a≥-2时,有意义. (2)欲使有意义,则必有3-a≥0,∴a≤3,∴当a≤3时,有意义. (3)欲使有意义,则必有5a≥0,∴a≥0,∴当a≥0时,有意义. (4)欲使有意义,则必有2a+1≥0,∴a≥-,∴当a≥-时,有意义.
2.解:(1)()2=5. (2)(-)2=()2=0.2. (3)=. (4)(5)2=52×()2=25×5=125. (5)==10. (6)=72×=49×=14. (7) =. (8)- =- =-.
3.解:(1)设圆的半径为R,由圆的面积公式得S=πR2,所以R2=,所以R=± .因为圆的半径不能是负数,所以R=-不符合题意,舍去,故R= ,即面积为S的圆的半径为 . (2)设较短的边长为2x,则它的邻边长为3x.由长方形的面积公式得2x3x=S,所以x=±,因为x=-不符合题意,舍去,所以x=,所以2x=2=,3x=3=,即这个长方形的相邻两边的长分别为和.
4.解:(1)32. (2)()2. (3)()2. (4)0.52. (5). (6)02.
5.解:由题意可知πr2=π22+π32,∴r2=13,∴r=±.∵r=-不符合题意,舍去,∴r=,即r的值是.
6.解:设AB=x,则AB边上的高为4x,由题意,得x4x=12,则x2=6,∴x=±.∵x=-不符合题意,舍去,∴x=.故AB的长为.
7.解:(1)∵x2+1>0恒成立,∴无论x取任何实数,都有意义. (2)∵(x-1)2≥0恒成立,∴无论x取任何实数,都有意义. (3)∵即x>0,∴当x>0时, 在实数范围内有意义. (4)∵即x>-1,∴当x>-1时,在实数范围内有意义.
8.解:设h=t2, 则由题意,得20=×22,解得=5,∴h=5t2,∴t= (负值已舍去).当h=10时,t= =,当h=25时,t= =.故当h=10和h=25时,小球落地所用的时间分别为 s和 s.
9.解:(1)由题意知18-n≥0且为整数,则n≤18,n为自然数且为整数,∴符合条件的n的所有可能的值为2,9,14,17,18. (2)∵24n≥0且是整数,n为正整数,∴符合条件的n的最小值是6.
10.解:V=πr2×10,r= (负值已舍去),当V=5π时, r= =,当V=10π时,r= =1,当V=20π时,r= =.
如图所示,根据实数a,b在数轴上的位置,化简:+.
〔解析〕 根据数轴可得出a+b与a-b的正负情况,从而可将二次根式化简.
解:由数轴可得:a+b<0,a-b>0,
∴+=|a-b|+|a+b|=a-b-(a+b)=-2b.
[解题策略] 结合数轴得出字母的取值范围,再化简二次根式,此题体现了数形结合的思想.
已知a,b,c为三角形的三条边,则+= .
〔解析〕 根据三角形三边的关系,先判断a+b-c与b-a-c的符号,再去根号、绝对值符号并化简.因为a,b,c为三角形的三条边,所以a+b-c>0,b-a-c<0,所以原式=(a+b-c)+[-(b-a-c)]=a+b-c-b+a+c=2a.故填2a.
[解题策略] 此类化简问题要特别注意符号问题.
化简:.
〔解析〕 题中并没有明确字母x的取值范围,需要分x≥3和x<3两种情况考虑.
解:当x≥3时,=|x-3|=x-3;
当x<3时,=|x-3|=-(x-3)=3-x.
[解题策略] 化简时,先将它化成|a|,再根据绝对值的意义分情况进行讨论.
5
O
一、引入新课:
上节数学课我们学习了二次根式的乘法计算,那么该怎样进行二次根式的除法运算呢?本节课我们一起学习。
二、展示目标,自主学习:
自学指导:认真阅读课本第8页——10页内容,完成下列任务:
1、先自主完成8页“探究”,再和同伴交流,你们得到的结论是: 。尝试用文字语言表述这个法则 。
2、认真看例4、例5、例6和例7的每一步计算和化简,有疑问随即和同伴交流或向老师请教;
3、最简二次根式满足的两个条件是:
①( )
② ( )
4、仿照例题格式 完成10页练习并和同伴互相找毛病。
三、检测反馈
1、师生共同解决“自学指导”中的`问题。
2、找同学演板10页练习1、2、3
四、课堂小结:
本节课你有哪些收获?
(1)二次根式的除法法则是什么?请写在下面。
(2)在进行二次根式的除法计算和化简时你有觉得应该注意些什么?请告诉大家。
五、布置作业:
一、“同类二次根式”与“同类项”
例1观察下列三组二次根式, 各有什么共同特征?
【解析】 (1) (2) 组中的二次根式被开方数相同, 称为同类二次根式;而第 (3) 组中二次根式, 经过化简后被开方数也相同, 所以也是同类二次根式.
【感悟】七年级时确定同类项的方法:一看字母要相同, 二看相同字母的指数分别相同, 三不看系数.现在判断同类二次根式的方法:一化为最简, 二看被开方数, 三不看根号外的系数.
二、“合并同类二次根式”与“合并同类项”
例2计算:
【感悟】整式的加减的实质就是合并同类项, 而二次根式加减的实质就是合并同类二次根式;利用类比的思想可归纳二次根式加减的步骤:一化简, 二寻找, 三合并.
三、“二次根式的乘除运算”与“整式的乘除运算”
【解析】二次根式的乘除运算中, 出现了类似多项式乘以单项式、多项式除以单项式, 多项式乘以多项式的运算, 因此整式的乘法法则和乘法公式仍然适用.同学们自己尝试计算.
【感悟】整式的乘除法法则类似地应用于二次根式的乘除法运算, 所不同的是二次根式运算的结果不仅要不含同类二次根式, 还要化为最简.利用乘法公式可以使二次根式运算简单便捷.
本课是因教研室来校听课指导的情况下设计的,由于课时紧,第二天要进行月考,故必须安排一节课进行《二次根式》的复习。设计学习卷一份,既要考虑堂上复习需要,又要考虑课后练习布置,故安排的题量较充足。同时配合使用PPT课件进行知识框架的复习,以及将学习卷内容在课件上演示,方便讲评。
教学实施情况:
复习本章知识框架,做PPT课件上6道判断题用时10分钟。做课前小测及讲评用时约8分钟,做典型题组及讲评用时约22分钟(主要针对中下生)。所有练习均为学生先做后学(难题、易错题老师讲评)。多数同学能在堂上完成到题组训练部分。
改进措施:
二次根式的加减教学反思
(一)本次研修我们主要研讨的是“如何以问题情境为载体提高课堂教学的有效性”。所以本节课除了创设生活情境外,最主要是设计一系列的问题串为教学情境,类比同类项、合并同类项和整式加减,通过老师的问题情境,一步步的探索发现同类二次根式的定义和二次根式加减法的法则。使学生在己有知识的基础上,自然迁移到新的知识,建立新旧知识之间的联系,形成数学知识体系。归纳起来说,就是本节课我们本着以学生为主体,以设计的问题情境为主线,运用类比的思想,并且贯穿一定量的练习,来完成本节课的教学目标。
从实际授课来看,存在以下问题:
一、对学生可能出现的问题,备课时有预设到,但没有再进一步强化、追踪没有作到位。
例如,在什么是同类二次根式时,预设到“根指数相等”可能会有问题,出了一个选择题来巩固根指数的问题,并且第4小题也是一个根据根指数相同来完成的问题。第4小题学生完成的不好,没有从老师讲选择题时得到提示,同时如果讲完后再作一个小练习加以巩固可能会更好。
二、从加减计算来看,学生对于去括号变号、运算顺序、分数的开方掌握的不好。,这一类的运算掌握不好,导致课堂进度有点拖,以致能力提升题没有进行,“没有老底子,就没有新文章”。更要求我们对学生的计算能力要高度重视。同时也觉得自己在备课时把重点放在了前半部分,对计算题的设计没有到
位,对难易的掌握不好和对学生可能出现的错误没有预设到,比如不知要合并,不知如何合并。所以最后一题小测题和学以致用第4小题换一下就更好了。
三、没有利用好课堂内生成的问题情境,对所学知识进行巩固,并完成新知识的生成。
比如:让学生举例的同类二次根式,这里有同学说了一个,我当时只是简单地想成学生化简不对。其实这里可以加个上几个例子,点出根指数的问题,这样在后面作第4小题的时候学生的难度会小一点。
今后在教学中,精心备课的同时,一定要注意学习素质以此加强自身素养,而现在的国培正是我们提高的好时机。感谢国培,加油吧!
二次根式的加减教学反思
(二)我在教学二次根式的加减时,先了解了学生前面所学,然后根据学生具体学情,认真备课。我感觉同学们学习的效果非常好,学习气氛浓厚,能够自
主合作探究学习,教学效果好。
本节课开始时,首先由一个求修建两块运动场的草坪面积的实际问题出发,引导学生得出两个二次根式求和的运算。从而提出问题:如何进行二次根式的加减运算?这样通过问题指向本课研究的重点,激发学生的学习兴趣和强烈的求知欲望。
然后指导学生根据问题去自学课本。通过自学课本解决问题,从而自己独立学习,结合小组合作学习掌握二次根式的加减运算。
通过我深入小组搜集信息、指导学习,发现学生具备自学能力,独立自学时很肃静,同学们都能够通过翻阅课本自己独立完成问题导读单上的一些问题。合作学习时也很热闹,同学们都能够交流自己的见解,并且能够针对一些见解提出自己的看法让大家评议。
总之,本节课我感觉同学们学习的效果非常好,学习气氛浓厚,能够自主合作探究学习。
二次根式的加减教学反思
(三)通过这节课的学习,学生将掌握二次根式加减法运算法则,并发现二次根式加减法的实质就是合并被开方数相同的二次根式,这正如整式加减法的实质就是合并同类项一样,为了确认哪些被开方数完全相同,需要将二次根式化成最简二次根式,这时一定要认真细心,避免出错。
本节课是二次根式加减的第一节课,它是在二次根式的乘除的基础上的进一步学习,目的是探索二次根式加减法运算法则,在设计本课时教案时,着重从以下几点考虑:1.先通过对实际问题的解决来引入二次根式的加减运算,再由学生自主讨论并总结二次根式的加减运算法则。2.四人小组探索、发现、解决问题,培养学生用数学方法解决实际问题的能力。3.对法则的教学与整式的加减比较学习。
在理解、掌握和运用二次根式的加减法运算法则的学习过程中,渗透了
1. 教材整体感知
本章主要内容是二次根式的概念、运算和最简二次根式, 与实数、整式、勾股定理等内容紧密联系, 旨在拓宽学生对“式”的认识.教学内容的呈现方式遵循从“特殊”到“一般”的原则, 活动设计延续本套教材的体系, 让学生乘坐“观察”、“思考”、“探究”、“讨论”和“归纳”之舟, 去认识数学的本质, 提高学生的合情推理、运算和思辨能力, 培养学生严谨的科学态度.本章也是学生后续学习解直角三角形、一元二次方程等内容的重要基础.
2. 重点与难点分析
教学重点: (1) 二次根式的概念及其运用; (2) 二次根式的化简和运算; (3) 最简二次根式的概念.
教学难点: (1) 对二次根式 (a≥0) 的非负性, 的理解及应用; (2) 理解二次根式的乘、除法的应用条件和二次根式的性质、运算的合理性; (3) 利用最简二次根式的概念进行化简和运算.
二、学情分析
1. 学情基础分析
学生已学习了“整式”“平方根”“算术平方根”“勾股定理”等内容, 这些知识和经验已具备了建构二次根式的知识基础和心理基础, 但值得提出的是, 学生的学习过程是学生对新知识、新技能的内化过程.在这个内化过程中, 要让学生在情感、思想、心理等方面做好接收新知识的准备, 因此, 本章教学应在“实数”和“整式”的基础上进行.
2. 思维障碍分析
二次根式的运算比整式、分式复杂得多, 学生对此会产生一些认知上的思维障碍.主要表现在: (1) 忽略二次根式的被开方数是非负数和二次相式本身的非负性; (2) 对最简二次根式的理解和运用不到位; (3) 对教材备注“在本章中, 如果没有特别说明, 所有的字母都表示正数”会产生字母只表示正数的片面认识; (4) 利用二次根式的运算解决实际问题, 学生会在一开始计算时就取近似值, 造成其结果不准确, 等等.
3. 学习方法探究
数学学习能力包括观察、记忆、思维、想象、注意以及自学、交往、表达等方面.教师在教学中要善于疏通信息渠道, 架设起知识与能力相融合的桥梁. (1) 鼓励自主探索, 引导合作交流.要鼓励学生自主探索与合作交流, 引导学生通过观察、计算、猜想、归纳和交流等数学活动, 提高学习兴趣、积累活动经验、发展思辨能力, 进而提高他们的数学素养; (2) 注意探究归纳, 关注代数推理.对于二次根式的性质, 教材中考虑到学生的年龄特征, 首先, 在“探究”栏目中给出几个具体问题, 让学生根据具体数据进行计算、分析得出结果, 然后再分析这些结果的共同特征, 由特殊到一般, 归纳得出结论, 旨在培养学生利用代数语言进行推理的能力; (3) 重点在于理解, 力求灵活运用.二次根式的性质是后续学习的基础, 因此教学中要注意让学生在理解的基础上加以记忆, 并灵活应用.
三、施教建议
1. 把握教材精髓
(1) 明确编写意图.教材编写意图是: (1) 淡化概念, 突出概念实质.教材对二次根式和代数式等概念, 只要求让学生有所体会, 不必深究, 这样做的目的是为了淡化概念, 突出概念实质; (2) 通过探究活动, 经历认识过程.教材让学生通过观察、思考、讨论等探究活动, 利用发现的规律进行计算, 然后利用计算器进行验证, 最后归纳得出二次根式的运算法则, 这个过程实际是让学生通过探究活动经历一个由特殊到一般的认识过程, 通过这样的探究活动改变了学生的学习方式, 发展了学生的思维能力.
(2) 凸显数学本质.本章的重点是让学生理解和掌握二次根式的性质和运算, 因此教材的重点是说明其性质和法则成立的合理性, 突出其数学本质.如教材在介绍二次根式的性质时;首先让学生通过探究活动感受这个性质, 然后再从算术平方根的意义出发, 结合具体例子对这个性质进行分析, 最后由特殊到一般得出这个性质, 这样就可以使学生对这个性质的数学实质有了较深刻的认识.又如在介绍二次根式的乘除运算时, 没有给出分母有理化的概念, 而是结合具体例子说明了分母有理化的要求.再如对于二次根式的加减运算时, 回避了同类二次根式的概念, 突出强调了运算时先将二次根式化成最简二次根式再进行合并的方法。这样处理的目的是让学生将学习的重点放在理解数学的本质上来, 以提高学生的数学能力.
(3) 注意教材要求.为了把握好教材的精髓, 还必须注意教材要求: (1) 讨论二次根式的被开方数中字母的取值范围, 这样可以加深学生对二次根式定义的理解.但这类问题只限于用在一元一次不等式解决的范围内, 不宜扩充到较复杂的情况; (2) 二次根式的性质中, 教材中仅考虑了a≥0这种情况, 对的情形不做考虑; (3) 本章的重点是二次根式的运算, 主要让学生掌握二次棍式的运算方法, 既要注意到它与有理数、整式之间的关系, 又要注意其自身的特点, 等等.
2. 教法探讨
(1) 注意纵向联系.本套教材将实数内容分为两章, 即第十章“实数”和本章内容.通过第十章的学习, 学生对数的认识已由有理数的范围扩大到实数范围, 并对实数的运算性质和运算法则有了初步的感知, 实际上在“实数”一章中, 学生对二次根式的加减运算已经有所接触, 本章在此基础上利用分配律给出了加减法的运算法则, 所以教学时要充分在“实数”基础上进行教学, 使学生进一步体会运算律在数的扩充过程中的一致性.同时还要注意与第十五章“整式”的联系, 由于数式通性, 当把二次根式中的实数看成字母时, 二次根式的运算实际上就是整式的运算.因此, 教学中要注意加强知识的纵向联系, 使学生的学习形成正迁移.
(2) 渗透数学思想.掌握好数学思想方法能使学生对数学知识本质的认识不断深化, 使学生在解决问题的过程中避免盲目性, 提高学生分析问题和解决问题的能力.本章中渗透数学思想的方法主要有数形结合法、类比法、分类讨论法和不完全归纳法等.如在“二次根式的加减”中, 教材上的两个提示语“比较二次根式的加减与整式的加减, 你能得出什么结论?”和“例5第 (1) 、 (2) 小题分别利用了多项式乘法法则和公式 (a+b) (a-b) =a2-b2, 在二次根式的运算中, 多项式乘法法则和公式仍然适用”, 这些都用到了类比思想, 又如在介绍二次根式的乘除运算时, 通过探究栏目引导学生从具体数据 (用计算器) 由特殊到一般, 归纳 (不完全归纳法) 得出二次根式乘法 (除法) 的运算法则, 不仅渗透了不完全归纳思想, 同时也提高了学生的合情推理能力.
(3) 开展探究活动.学生的数学活动经验是通过观察、体验、感悟与思考, 从感性向理性飞跃时所产生的.认识和获得解决问题的策略, 是学生发展的基础.为了使学生获得更多的数学活动经验, 在本章的教学中应积极开展探究活动. (1) 开展探究交流.在知识发生发展过程中要针对教学的重点和难点, 开展自主探索与合作交流, 促使学生学习行为的转变; (2) 加强实际应用.以教材中的裁截板材、确定纸张规格、电视塔的传播半径问题为切入点, 加强实际应用, 让学生感受二次根式的应用价值; (3) 亲密数学文化.教材中介绍了海伦公式和秦九韶公式的历史, 教学中还应引导学生阅读有关数学文化史料, 加强爱国主义教育和提高学生的数学素养; (4) 开展数学活动.教材中的“数学活动”有两个:通过测量计算发现书籍、纸张的长与宽之间的关系和做一个长、宽、高都是用二次根式表示的无理数长方形纸盒.教学中, 还应鼓励学生在生活中发现更多地有关二次根式应用的实例.
(4) 弹性设计教学.本章主要内容是二次根式的化简和运算, 需要一定的练习才可以掌握化简方法和运算规律.因此, 教学中可以适当增加教学内容的弹性和灵活性, 使学生更好地理解二次根式的意义, 更好地掌握二次根式的性质和运算, 在加强练习的过程中, 要注意知识之间的相互联系, 使学生养成一种以联系和发展的观点学习数学的习惯, 为后续的学习打下良好的基础.为了加强学生对二次根式的运算与整式运算之间联系的理解, 可补充一些计算题.
解析:让学生认识到可以将看作两个整体, 先用平方差公式, 再用完全平方公式进行计算, 这样加深了二次根式与整式的联系, 拓宽了学生的视野, 深化了学生对“式”的认识.
还可以补充一些开放性的问题:
若 (a、b均为实数) , 请回答下列问题: (1) a=______, b=______; (2) 写出第n个关系式______; (3) 验证你写出的关系式的正确性.
解析:通过本例中三个问题的训练, 不仅使学生学会观察、归纳的学习能力, 而且提高了学生应用二次根式解决问题的能力.
(5) 关注有效生成.学生掌握知识、形成能力是一个厚积薄发的过程, 这就要求我们在平时的教学中应不失时机地对学生进行培养.对于课堂教学, 要十分关注其有效生成, 注意综合运用.二次根式很多时候都是和其他知识联系在一起的, 这一点应让学生了解.
例3若, 求a-19952的值.
解析:先由a-2000≥0, 判断出1995-a的值是负数, 去掉绝对值后便可求得结果.本例主要是让学生看出解决这个问题的“钥匙”是二次根式的被开方数是非负数, 因此应加深对二次根式的被开方数是非负数的认识和应用, 鼓励不同的解法.在二次根式的运算中, 有些算式可以鼓励学生有不同的解法.
但值得注意的是, 鼓励不同解法的目的是为了引导学生注意观察、分析运算式的特点, 选择一种简便的方法进行运算, 培养学生思维的灵活性和合理性.
(6) 加强错误辨析.二次根式在学生已学过的数学知识中是符号感最强的内容之一, 因此学生在二次根式的学习过程中会发生各类错误, 我们要加强思辨训练, 做到防患于未然.如最简二次根式是本章的一个重要概念, 它在二次根式的性质、运算中扮演十分重要的角色, 必须使学生准确理解和正确掌握, 可举一些辨析例题.
例5下列计算正确吗?为什么?
解析:通过这几道辨析题向学生说明: (1) 只有化成最简二次根式后, 被开方数相同的二次根式才能合并; (2) 只有积和商的算术平方根性质, 而没有和差的算术平方根性质, 等等.
【二次根式的乘法说课】推荐阅读:
二次根式说课09-10
《二次根式加减》说课稿01-03
初中数学二次根式说课04-04
二次根式的除法-教学教案11-10
数学教案-二次根式的除法09-17
二次根式试题03-17
二次根式易错题分析07-15
二次根式教学反思案例11-30
二次根式1教学案例06-25
121二次根式学案104-18